Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Indoor Air ; 32(10): e13142, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305077

RESUMEN

Implications for the academic and interpersonal development of children and adolescents underpin a global political consensus to maintain in-classroom teaching during the ongoing COVID-19 pandemic. In support of this aim, the WHO and UNICEF have called for schools around the globe to be made safer from the risk of COVID-19 transmission. Detailed guidance is needed on how this goal can be successfully implemented in a wide variety of educational settings in order to effectively mitigate impacts on the health of students, staff, their families, and society. This review provides a comprehensive synthesis of current scientific evidence and emerging standards in relation to the use of layered prevention strategies (involving masks, distancing, and ventilation), setting out the basis for their implementation in the school environment. In the presence of increasingly infectious SARS-Cov-2 variants, in-classroom teaching can only be safely maintained through a layered strategy combining multiple protective measures. The precise measures that are needed at any point in time depend upon a number of dynamic factors, including the specific threat-level posed by the circulating variant, the level of community infection, and the political acceptability of the resultant risk. By consistently implementing appropriate prophylaxis measures, evidence shows that the risk of infection from in-classroom teaching can be dramatically reduced. Current studies indicate that wearing high-quality masks and regular testing are amongst the most important measures in preventing infection transmission; whilst effective natural and mechanical ventilation systems have been shown to reduce infection risks in classrooms by over 80%.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Niño , Adolescente , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Máscaras , Pandemias/prevención & control , Instituciones Académicas
2.
Artículo en Inglés | MEDLINE | ID: mdl-33153155

RESUMEN

The role of aerosolized SARS-CoV-2 viruses in airborne transmission of COVID-19 has been debated. The aerosols are transmitted through breathing and vocalization by infectious subjects. Some authors state that this represents the dominant route of spreading, while others dismiss the option. Here we present an adjustable algorithm to estimate the infection risk for different indoor environments, constrained by published data of human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters. We evaluate typical indoor settings such as an office, a classroom, choir practice, and a reception/party. Our results suggest that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments. This "highly infective" category represents approximately 20% of the patients who tested positive for SARS-CoV-2. We find that "super infective" subjects, representing the top 5-10% of subjects with a positive test, plus an unknown fraction of less-but still highly infective, high aerosol-emitting subjects-may cause COVID-19 clusters (>10 infections). In general, active room ventilation and the ubiquitous wearing of face masks (i.e., by all subjects) may reduce the individual infection risk by a factor of five to ten, similar to high-volume, high-efficiency particulate air (HEPA) filtering. A particularly effective mitigation measure is the use of high-quality masks, which can drastically reduce the indoor infection risk through aerosols.


Asunto(s)
Aerosoles , Infecciones por Coronavirus/transmisión , Modelos Teóricos , Neumonía Viral/transmisión , Microbiología del Aire , Algoritmos , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/prevención & control , Filtración , Humanos , Máscaras , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2 , Ventilación
3.
J Environ Monit ; 7(6): 568-76, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15931416

RESUMEN

One of the major limitations in advancing the understanding of tropospheric ozone and aerosol generation and developing strategies for their control is the technical ability to accurately measure volatile organic compounds (VOCs). This paper describes the design of a constant flow VOC sampler. The versatile sampler can be used for fully automated concentration and flux measurements of VOCs. The sampler incorporates a microprocessor control unit and provides highly accurate mass flow control and significant ease of operation. Sampling sequences can be programmed directly or by remote control through a PC. All important operational parameters necessary for a complete sampling audit trail are logged. Compact weatherproof housings and low power consumption allow operation at remote sites and locations which are sensitive to disturbances or have restricted access. Inner wetted surfaces of the sampler are constructed from non-contaminating materials that do not sorb or emit VOC, and thus permit the collection of representative samples even in environments with very low VOC concentrations. The cartridge magazine provides a maximum of 20 sequential cartridge samples, which allows for long-term air quality assessments. In the dual channel mode, two samples can be collected simultaneously through two independent sample loops, providing ten sequential sample pairs. This design allows the parallel collection of (a) quality assurance backup samples, (b) samples on two different types of cartridges/sorbents to allow a variety of analyses, or (c) differential samples for flux measurements using enclosure, aerodynamic profile, or relaxed eddy accumulation (REA) methods. Field applications including airplane profile measurements above a tropical rainforest area, as well as gradient and REA measurements over a mid-latitude mixed forest stand are described, and demonstrate the validity and flexibility of the system. In particular, the application of the VOC sampler as an integrated part of a REA system is emphasized.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Adsorción , Automatización , Monitoreo del Ambiente/instrumentación , Diseño de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA