Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res ; 73(9): 2850-62, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23440422

RESUMEN

The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Ácido Graso Sintasas/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Modelos Estadísticos , Trasplante de Neoplasias , Transducción de Señal , Estearoil-CoA Desaturasa/metabolismo , Esteroles/metabolismo
2.
ACS Chem Biol ; 7(11): 1884-91, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22928772

RESUMEN

Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin sensitivity. To enable noninvasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models.


Asunto(s)
Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/análisis , Células 3T3-L1 , Animales , Transporte Biológico , Expresión Génica , Insulina/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA