Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 242: 109861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522635

RESUMEN

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Asunto(s)
Péptidos beta-Amiloides , Electrorretinografía , Proteínas del Ojo , Factores de Crecimiento Nervioso , Serpinas , Animales , Serpinas/metabolismo , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Ratas , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Fragmentos de Péptidos/toxicidad , Modelos Animales de Enfermedad , Receptores de Laminina/metabolismo , Masculino , Retina/efectos de los fármacos , Retina/metabolismo , Humanos , Inyecciones Intravítreas , Western Blotting , Enfermedades de la Retina/prevención & control , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/inducido químicamente , Células Cultivadas
2.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35236774

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , COVID-19/terapia , Riñón/virología , Pulmón/virología , Ratones , SARS-CoV-2
3.
Exp Eye Res ; 195: 108030, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272114

RESUMEN

Retinopathy of prematurity (ROP) is a growing cause of lifelong blindness and visual defects as improved neonatal care worldwide increases survival in very-low-birthweight preterm newborns. Advancing ROP is managed by laser surgery or a single intravitreal injection of anti-VEGF, typically at 33-36 weeks gestational age. While newer methods of scanning and telemedicine improve monitoring ROP, the above interventions are more difficult to deliver in developing countries. There is also concern as to laser-induced detachment and adverse developmental effects in newborns of anti-VEGF treatment, spurring a search for alternative means of mitigating ROP. Pigment epithelium-derived factor (PEDF), a potent angiogenesis inhibitor appears late in gestation, is undetected in 25-28 week vitreous, but present at full term. Its absence may contribute to ROP upon transition from high-to-ambient oxygen environment or with intermittent hypoxia. We recently described antiangiogenic PEDF-derived small peptides which inhibit choroidal neovascularization, and suggested that their target may be laminin receptor, 67LR. The latter has been implicated in oxygen-induced ischemic retinopathy (OIR). Here we examined the effect of a nonapeptide, PEDF 336, in a newborn mouse OIR model. Neovascularization was significantly decreased in a dose-responsive manner by single intravitreal (IVT) injections of 1.25-7.5 µg/eye (1.0-6.0 nmol/eye). By contrast, anti-mouse VEGFA164 was only effective at 25 ng/eye, with limited dose-response. Combination of anti-VEGFA164 with PEDF 336 gave only the poorer anti-VEGF response while abrogating the robust inhibition seen with peptide-alone, suggesting a need for VEGF in sensitizing the endothelium to the peptide. VEGF stimulated 67LR presentation on endothelial cells, which was decreased in the presence of PEDF 336. Mouse and rabbit eyes showed no histopathology or inflammation after IVT peptide injection. Thus, PEDF 336 is a potential ROP therapeutic, but is not expected to be beneficial in combination with anti-VEGF.


Asunto(s)
Animales Recién Nacidos , Bevacizumab/administración & dosificación , Proteínas del Ojo/metabolismo , Isquemia/tratamiento farmacológico , Factores de Crecimiento Nervioso/metabolismo , Neovascularización Retiniana/tratamiento farmacológico , Serpinas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Inyecciones Intravítreas , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxígeno/toxicidad , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
4.
Wound Repair Regen ; 28(5): 684-695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32585760

RESUMEN

Scar forming wounds are often characterized by higher levels of vascularity than non-scarring wounds and normal skin, and inhibition of angiogenesis has been shown to inhibit scar formation in some model systems. The rabbit ear hypertrophic scar (HS) model has been widely used to study the mechanisms that underlie the development of HS as well as the effectiveness of various treatments. Although the rabbit ear HS model is well characterized in terms of scar formation, the rate and level of angiogenesis has not been investigated in this model, and the cause-effect relationship between angiogenesis and rabbit HSs has not been examined. In the current study, full-thickness excisional wounds were created on the ventral side of New Zealand White rabbit ears to induce HS formation, and the dynamic pattern of angiogenesis and the expression of angiogenic regulatory factors were examined over time. Blood vessel density was found to peak at 2.7% on day 14 post-wounding, decreasing to 1.7% by day 28. mRNA levels of the proangiogenic factor VEGF-A peaked at day 14, while the expression of the antiangiogenic factors pigment epithelium-derived factor (PEDF) and thrombospondin 1 (TSP1) peaked at day 28 post-wounding. To examine whether inhibition of angiogenesis influences HS formation in this model, wounds were treated with exogenous soluble antiangiogenic agents including recombinant PEDF (rPEDF) and a functional PEDF peptide (PEDF-335). rPEDF and PEDF-335 were administered intradermally from day 4 post-wounding every 3 days until day 19. Intradermal injection of rPEDF or PEDF-335 both led to decreased angiogenesis and decreased collagen deposition at the wound site. The results support the utility of antiangiogenic therapies, including rPEDF/PEDF-335, as a potential new strategy for the prevention or treatment of HSs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Cicatriz Hipertrófica/metabolismo , Colágeno/metabolismo , Proteínas del Ojo/farmacología , Neovascularización Patológica/prevención & control , Factores de Crecimiento Nervioso/farmacología , Serpinas/farmacología , Animales , Modelos Animales de Enfermedad , Oído Externo/lesiones , Oído Externo/metabolismo , Conejos
5.
Exp Eye Res ; 188: 107798, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31520600

RESUMEN

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/prevención & control , Proteínas del Ojo/uso terapéutico , Factores de Crecimiento Nervioso/uso terapéutico , Oligopéptidos/uso terapéutico , Serpinas/uso terapéutico , Administración Oftálmica , Inhibidores de la Angiogénesis/química , Animales , Apoptosis , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Portadores de Fármacos , Electrorretinografía , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteínas del Ojo/química , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/química , Oligopéptidos/química , Soluciones Oftálmicas , Profármacos , Conejos , Ratas , Serpinas/química
6.
FASEB J ; : fj201701568R, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856660

RESUMEN

Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential. EGFR up-regulation was reversed using EGFR small interfering RNA polyplex, antibody, or small-molecule inhibitor. The diminished function of TSP-1 was augmented via a peptidomimetic. The combination of EGFR inhibition and TSP-1 restoration led to enhanced therapeutic efficacy in vitro, in 3-dimensional patient-derived spheroids, and in a subcutaneous human glioblastoma model in vivo. Systemic administration of the combination therapy to mice bearing intracranial murine glioblastoma resulted in marginal therapeutic outcomes, probably due to brain delivery challenges, p53 mutation status, and the aggressive nature of the selected cell line. Nevertheless, this study provides a proof of concept for exploiting regulators of tumor dormancy for glioblastoma therapy. This therapeutic strategy can be exploited for future investigations using a variety of therapeutic entities that manipulate the expression of dormancy-associated genes in glioblastoma as well as in other cancer types.-Tiram, G., Ferber, S., Ofek, P., Eldar-Boock, A., Ben-Shushan, D., Yeini, E., Krivitsky, A., Blatt, R., Almog, N., Henkin, J., Amsalem, O., Yavin, E., Cohen, G., Lazarovici, P., Lee, J. S., Ruppin, E., Milyavsky, M., Grossman, R., Ram, Z., Calderón, M., Haag, R., Satchi-Fainaro, R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma.

7.
Cells ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334597

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Melfalán , gammaglobulinas , Humanos , Ratones , Animales , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo
8.
Cancer Cell ; 7(1): 101-11, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15652753

RESUMEN

Development of antiangiogenic therapies would be significantly facilitated by quantitative surrogate pharmacodynamic markers. Circulating peripheral blood endothelial cells (CECs) and/or their putative progenitor subset (CEPs) have been proposed but not yet fully validated for this purpose. Herein, we provide such validation by showing a striking correlation between highly genetically heterogeneous bFGF- or VEGF-induced angiogenesis and intrinsic CEC or CEP levels measured by flow cytometry, among eight different inbred mouse strains. Moreover, studies using genetically altered mice showed that levels of these cells are affected by regulators of angiogenesis, including VEGF, Tie-2, and thrombospondin-1. Finally, treatment with a targeted VEGFR-2 antibody caused a dose-dependent reduction in viable CEPs that precisely paralleled its previously and empirically determined antitumor activity.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Biomarcadores , Células Endoteliales/fisiología , Neovascularización Patológica , Células Madre/fisiología , Inhibidores de la Angiogénesis/metabolismo , Animales , Bioensayo/métodos , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Fenotipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Madre/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37041017

RESUMEN

A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Ratones , SARS-CoV-2 , Encéfalo
10.
bioRxiv ; 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36523403

RESUMEN

The present study was designed to investigate the effects of a soluble ACE2 protein termed ACE2 618-DDC-ABD, bioengineered to have long duration of action and high binding affinity to SARS-CoV-2, when administered either intranasally (IN) or intraperitoneally (IP) and before or after SARS-CoV-2 inoculation. K18hACE2 mice permissive for SARS-CoV-2 infection were inoculated with 2Ã-10 4 PFU wildtype SARS-CoV-2. In one protocol, ACE2 618-DDC-ABD was given either IN or IP, pre- and post-viral inoculation. In a second protocol, ACE2 618-DDC-ABD was given either IN, IP or IN+IP but only post-viral inoculation. In addition, A549 and Vero E6 cells were used to test neutralization of SARS-CoV-2 variants by ACE2 618-DDC-ABD at different concentrations. Survival by day 5 was 0% in infected untreated mice, and 40% in mice from the ACE2 618-DDC-ABD IP-pre treated group. By contrast, in the IN-pre group survival was 90%, histopathology of brain and kidney was essentially normal and markedly improved in the lungs. When ACE2 618-DDC-ABD was administered only post viral inoculation, survival was 30% in the IN+IP group, 20% in the IN and 0% in the IP group. Brain SARS-CoV-2 titers were high in all groups except for the IN-pre group where titers were undetectable in all mice. In cells permissive for SARS-CoV-2 infection, ACE2 618-DDC-ABD neutralized wildtype SARS-CoV-2 at high concentrations, whereas much lower concentrations neutralized omicron BA. 1. We conclude that ACE2 618-DDC-ABD provides much better survival and organ protection when administered intranasally than when given systemically or after viral inoculation and that lowering brain titers is a critical determinant of survival and organ protection.

11.
bioRxiv ; 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33758841

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2), which is membrane bound, as its initial cell contact receptor preceding viral entry. Here we report a human soluble ACE2 variant fused with a 5kD albumin binding domain (ABD) and bridged via a dimerization motif hinge-like 4-cysteine dodecapeptide, which we term ACE2 1-618-DDC-ABD. This protein is enzymatically active, has increased duration of action in vivo conferred by the ABD-tag, and displays 20-30-fold higher binding affinity to the SARS-CoV-2 receptor binding domain than its des-DDC monomeric form (ACE2 1-618-ABD) due to DDC-linked dimerization. ACE2 1-618-DDC-ABD was administered for 3 consecutive days to transgenic k18-hACE2 mice, a model that develops lethal SARS-CoV-2 infection, to evaluate the preclinical preventative/ therapeutic value for COVID-19. Mice treated with ACE2 1-618-DDC-ABD developed a mild to moderate disease for the first few days assessed by a clinical score and modest weight loss. The untreated control animals, by contrast, became severely ill and had to be sacrificed by day 6/7 and lung histology revealed extensive pulmonary alveolar hemorrhage and mononuclear infiltrates. At 6 days, mortality was totally prevented in the treated group, lung histopathology was improved and viral titers markedly reduced. This demonstrates for the first time in vivo the preventative/ therapeutic potential of a novel soluble ACE2 protein in a preclinical animal model.

12.
Neurooncol Adv ; 3(1): vdab002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33629064

RESUMEN

BACKGROUND: Medulloblastoma (MB) comprises four subtypes of which group 3 MB are the most aggressive. Although overall survival for MB has improved, the outcome of group 3 MB remains dismal. C-MYC (MYC) amplification or MYC overexpression which characterizes group 3 MB is a strong negative prognostic factor and is frequently associated with metastases and relapses. We previously reported that MYC expression alone promotes highly aggressive MB phenotypes, in part via repression of thrombospondin-1 (TSP-1), a potent tumor suppressor. METHODS: In this study, we examined the potential role of TSP-1 and TSP-1 peptidomimetic ABT-898 in MYC-amplified human MB cell lines and two distinct murine models of MYC-driven group 3 MBs. RESULTS: We found that TSP-1 reconstitution diminished metastases and prolonged survival in orthotopic xenografts and promoted chemo- and radio-sensitivity via AKT signaling. Furthermore, we demonstrate that ABT-898 can recapitulate the effects of TSP-1 expression in MB cells in vitro and specifically induced apoptosis in murine group 3 MB tumor cells. CONCLUSION: Our data underscore the importance of TSP-1 as a critical tumor suppressor in MB and highlight TSP-1 peptidomimetics as promising novel therapeutics for the most lethal subtype of MB.

13.
Mol Cancer Ther ; 8(1): 64-74, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19139114

RESUMEN

Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores/metabolismo , Antígenos CD36/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Proteína Ligando Fas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/metabolismo , Trombospondina 1/deficiencia , Trombospondina 1/genética , Trombospondina 1/metabolismo
14.
Cancer Res ; 67(4): 1716-24, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17308113

RESUMEN

In the pediatric cancer neuroblastoma, clinically aggressive disease is associated with increased levels of angiogenesis stimulators and high vascular index. We and others have hypothesized that blocking angiogenesis may be effective treatment for this pediatric malignancy. However, little is known about the efficacy of antiangiogenic agents in pediatric malignancies. Recently, promising results have been reported in an adult phase I study of ABT-510, a peptide derivative of the natural angiogenic inhibitor thrombospondin-1. Histone deacetylase inhibitors, such as valproic acid (VPA), have also been shown to have antiangiogenic activity in several cancer models. In this study, we evaluated the effects of ABT-510 and VPA on neuroblastoma tumor growth and angiogenesis. Although only VPA was capable of blocking the proliferation of neuroblastoma cells and inducing neuroblastoma cell apoptosis in vitro, treatment with VPA or ABT-510 alone significantly suppressed the growth of neuroblastoma xenografts established from two different MYCN-amplified cell lines. Combination therapy more effectively inhibited the growth of small neuroblastoma xenografts than single-agent treatment, and in animals with large xenografts, total cessation of tumor growth was achieved with this treatment approach. The microvascular density was significantly reduced in the xenografts treated with combination therapy compared with controls or tumors treated with single agents. In addition, the number of structurally abnormal vessels was reduced, suggesting that these agents may "normalize" the tumor vasculature. Our results indicate that ABT-510 combined with VPA may be an effective antiangiogenic treatment strategy for children with high-risk neuroblastoma.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neuroblastoma/irrigación sanguínea , Neuroblastoma/tratamiento farmacológico , Oligopéptidos/farmacología , Ácido Valproico/farmacología , Animales , Apoptosis/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Femenino , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neuroblastoma/patología , Oligopéptidos/administración & dosificación , Ácido Valproico/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Invest Ophthalmol Vis Sci ; 59(10): 4071-4081, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098194

RESUMEN

Purpose: Drug delivery by intravitreal injection remains problematic, small agents and macromolecules both clearing rapidly. Typical carriers use microparticles (>2 µm), with size-related liabilities, to slow diffusion. We recently described cationic nanoparticles (NP) where conjugated Arg peptides prolonged residence in rat eyes, through ionic interaction with vitreal poly-anions. Here we extended this strategy to in vivo tracking of NP-conjugate (NPC) clearance from rabbit eyes. Relating t1/2 to zeta potential, and varied dose, we estimated the limits of this charge-based delivery system. Methods: NPC carried covalently attached PEG8-2Arg or PEG8-3Arg pentapeptides, having known sequences from human eye proteins. Peptides were conjugated (61-64 per NPC); each NP/NPC also carried a cyanine7 tag (<0.5 dye/particle). In vivo imaging system (IVIS), after intravitreal injection, estimated NPC loss by 800-nm photon emission (745-nm excitation) at 1 to 3-week intervals following initial scan at day 10. Results: NPC of 2Arg-peptides or 3Arg-peptides showed clearance t1/2 of 7 days and 17 days respectively, unconjugated NP t1/2 was <<5 days. Doses of 90, 180, and 360 µg of PEG8-2Arg NPC were compared. The lower doses showed dose-proportional day-10 concentration, and similar clearance. Higher early loss was seen with a 360-µg dose, exceeding rabbit vitreal binding capacity. No inflammation was observed. Conclusions: This type of cationic NPC can safely increase residence t1/2 in a 1 to 3-week range, with dose <100 µg per mL vitreous. Human drug load may then range from 10 to 100 µg/eye, usefulness depending on individual drug potency and release rate, superimposed on extended intravitreal residence.


Asunto(s)
Arginina/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intravítreas , Nanopartículas , Péptidos , Cuerpo Vítreo/metabolismo , Animales , Arginina/administración & dosificación , Portadores de Fármacos/química , Modelos Animales , Nanopartículas/administración & dosificación , Nanopartículas/química , Péptidos/administración & dosificación , Péptidos/farmacocinética , Conejos , Ratas
16.
Cancer Biol Ther ; 6(3): 454-62, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17384534

RESUMEN

Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Antígenos CD36/metabolismo , Capilares/efectos de los fármacos , Caspasa 8/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Glioma/irrigación sanguínea , Glioma/patología , Humanos , Ratones , Ratones Desnudos , Neovascularización Patológica/patología , Oligopéptidos/farmacología , Secuencias Repetitivas de Aminoácido , Trombospondinas/química , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Clin Cancer Res ; 12(24): 7444-55, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17189418

RESUMEN

PURPOSE: The angiogenic phenotype of malignant cancers has been established as a target for cancer therapy. ABT-526 and ABT-510, two peptide mimetics of thrombospondin-1 (TSP-1), block angiogenesis in vitro and in vivo and slow tumor growth in mice. To guide the clinical development of these drugs, translational studies in dogs with naturally occurring cancers were initiated. EXPERIMENTAL DESIGN: A prospective open-label trial using ABT-510 or ABT-526 in pet dogs with measurable malignant spontaneously arising tumors. Endpoints included safety, pharmacokinetics, antitumor activity, and preliminary assessment of changes in circulating endothelial cell populations. RESULTS: Two-hundred and forty-two dogs were sequentially entered to this open-label trial. The elimination half-life for ABT-510 and ABT-526 was 0.7 and 0.8 h, respectively (range, 0.5-1 h). No dose-limiting toxicities were seen in any dogs (N = 242). Forty-two dogs receiving peptide had objective responses (>50% reduction in tumor size; n = 6) or significant disease stabilization. Most objective responses were seen after 60 days of exposure to the TSP-1 peptide. Antitumor activity was similar for both peptides and was seen in several histologies, including mammary carcinoma, head and neck carcinoma, soft tissue sarcoma, cutaneous T-cell lymphoma, and non-Hodgkin's lymphoma. Assessment of circulating endothelial cell populations in a small subset of dogs suggested that effective exposure to TSP-1 peptides may be associated with reductions in circulating endothelial cells. CONCLUSIONS: These results support the safety and activity of ABT-526 and ABT-510 in dogs with naturally occurring malignant cancers. Data from this preclinical trial support the development of TSP-1 mimetic peptides as anticancer agents.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Trombospondina 1/uso terapéutico , Inhibidores de la Angiogénesis/efectos adversos , Inhibidores de la Angiogénesis/sangre , Inhibidores de la Angiogénesis/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Perros , Ensayos de Selección de Medicamentos Antitumorales , Células Endoteliales/efectos de los fármacos , Femenino , Humanos , Masculino , Oligopéptidos/efectos adversos , Oligopéptidos/sangre , Oligopéptidos/farmacología , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/farmacología , Trombospondina 1/efectos adversos , Trombospondina 1/agonistas , Trombospondina 1/sangre , Trombospondina 1/farmacología , Células Tumorales Cultivadas
18.
Clin Cancer Res ; 12(24): 7456-64, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17189419

RESUMEN

PURPOSE: Thrombospondin-I (TSP-I) is a natural antiangiogenic protein that enhances apoptosis of activated endothelial cells. A modified nonapeptide from TSP-I, ABT-526, has been found to be active in mouse cancer models and in dogs with naturally occurring cancers. To further assist in the development of ABT-526, we report herein on its evaluation in combination with cytotoxic chemotherapy in pet dogs with relapsed non-Hodgkin's lymphoma (NHL). EXPERIMENTAL DESIGN: Ninety-four pet dogs with naturally occurring first-relapse NHL were entered into a prospective randomized placebo controlled double-blinded trial of ABT-526 plus CeeNu (Bristol-Myers Squibb, New York, NY) versus CeeNu alone. Endpoints included response rate, duration of response, time to progression, and incidence of toxicoses. RESULTS: No significant ABT-526-specific toxicities were seen. CeeNu-associated toxicities, including neutropenia, thrombocytopenia, gastroenteritis, and elevated alanine transaminase, were similar. No significant difference in objective response rate was seen (ABT-526 + CeeNu versus placebo + CeeNu, 23/49 versus 23/37; P > 0.25). Cooperative activity between ABT-526 and CeeNu chemotherapy was evident based on a significant increase in the median response duration of dogs receiving ABT-526 plus CeeNu compared with placebo plus CeeNu (35 versus 15 days; P < 0.05). The time to progression for responding cases was also significantly greater in dogs receiving ABT-526 plus CeeNu compared with placebo plus CeeNu (41 versus 21 days; P < 0.05). CONCLUSIONS: Results of this preclinical trial suggest that the activity of ABT-526 is sustained when combined with cytotoxic chemotherapy; furthermore, the activity seems to be associated with the maintenance of CeeNu-induced treatment responses. Further studies of TSP-I peptide antiangiogenic therapy in pet dogs and humans with NHL are warranted.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/veterinaria , Recurrencia Local de Neoplasia/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Trombospondina 1/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Progresión de la Enfermedad , Perros , Método Doble Ciego , Femenino , Lomustina/administración & dosificación , Masculino , Placebos , Análisis de Supervivencia , Factores de Tiempo
19.
Cancer Res ; 65(11): 4663-72, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15930284

RESUMEN

Kringle 5 (K5) of human plasminogen has been shown to inhibit angiogenesis by inducing the apoptosis of proliferating endothelial cells. Peptide regions around the lysine-binding pocket of K5 largely mediate these effects, particularly the peptide PRKLYDY, which we show to compete with K5 for the binding to endothelial cells. The cell surface binding site for K5 that mediates these effects has not been defined previously. Here, we report that glucose-regulated protein 78, exposed on cell surfaces of proliferating endothelial cells as well as on stressed tumor cells, plays a key role in the antiangiogenic and antitumor activity of K5. We also report that recombinant K5-induced apoptosis of stressed HT1080 fibrosarcoma cells involves enhanced activity of caspase-7, consistent with the disruption of glucose-regulated protein 78-procaspase-7 complexes. These results establish recombinant K5 as an inhibitor of a stress response pathway, which leads to both endothelial and tumor cell apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/farmacología , Plasminógeno/farmacología , Secuencia de Aminoácidos , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Apoptosis/fisiología , Sitios de Unión , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Chaperón BiP del Retículo Endoplásmico , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Plasminógeno/antagonistas & inhibidores , Plasminógeno/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
20.
Invest Ophthalmol Vis Sci ; 58(12): 5142-5150, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986592

RESUMEN

Purpose: Intravitreal injection of antiangiogenic agents is becoming a standard treatment for neovascular retinal diseases. Sustained release of therapeutics by injecting colloidal carriers is a promising approach to reduce the injection frequency, which reduces treatment burdens and the risk of complications on patients. Such sustained release often requires carriers to have micrometer-scale dimension that, however, can potentially promote glaucoma and inflammation. Small, polycationic particles can be immobilized in vitreous through multiple cooperative ionic interactions with hyaluronic acid of the vitreous interior, but such particles are generally toxic. Here, we synthesized and examined a biocompatible dextran-based nanocarrier (<50 nm in diameter) conjugated with cationic peptides containing L-arginine with minimal toxicity, aiming to provide sustained release of therapeutic drugs in vitreous. Methods: We synthesized the nanocarriers with condensed cholesteryl dextran (CDEX) as core material. Cationic peptides containing 1 to 4 arginine groups, along with fluorescence tags, were conjugated to the CDEX surface. We monitored the carrier diffusion rate ex vivo and half-lives in vivo in rodent vitreous using fluorescence imaging. We evaluated the toxicity by histological examinations at the second, third, eighth, and thirty-sixth week. Results: The diffusion rate of nanocarriers was inversely related to zeta potential values in freshly isolated vitreous humor. We observed increased half-lives in vivo with increasing zeta potential (up to 240 days). Histological examinations confirmed no adverse effects on ocular morphology and organization. Conclusions: We demonstrated the potential of L-arginine peptide-conjugated nanocarriers toward safe and sustained therapeutic release system for posterior eye diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacocinética , Arginina/química , Ésteres del Colesterol/química , Dextranos/química , Portadores de Fármacos/farmacocinética , Cuerpo Vítreo/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Materiales Biocompatibles , Portadores de Fármacos/química , Angiografía con Fluoresceína , Semivida , Inyecciones Intravítreas , Nanopartículas , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA