Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36537201

RESUMEN

Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.


Asunto(s)
Cordados , Factor de Crecimiento Epidérmico , Animales , Tipificación del Cuerpo/genética , Cordados/genética , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/química , Regulación del Desarrollo de la Expresión Génica , Mutación , Pez Cebra/genética , Proteínas Ligadas a GPI/metabolismo
2.
Dev Biol ; 491: 13-30, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049533

RESUMEN

Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for homeostasis and maintaining corneal transparency. Owing to our limited knowledge of cell fates and gene activity within the cornea, the search for unique markers to identify and isolate these cells remains crucial for ocular surface reconstruction. We performed single-cell RNA sequencing of corneal cells from larval and adult stages of Xenopus. Our results indicate that as the cornea develops and matures, there is an increase in cellular diversity, which is accompanied by a substantial shift in transcriptional profile, gene regulatory network and cell-cell communication dynamics. Our data also reveals several novel genes expressed in corneal cells and changes in gene expression during corneal differentiation at both developmental time-points. Importantly, we identify specific basal cell clusters in both the larval and adult cornea that comprise a relatively undifferentiated cell type and express distinct stem cell markers, which we propose are the putative larval and adult CESCs, respectively. This study offers a detailed atlas of single-cell transcriptomes in the frog cornea. In the future, this work will be useful to elucidate the function of novel genes in corneal epithelial homeostasis, wound healing and regeneration.


Asunto(s)
Epitelio Corneal , Animales , Córnea , Epitelio Corneal/metabolismo , Larva/genética , Larva/metabolismo , Células Madre/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
3.
Dev Biol ; 478: 122-132, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224682

RESUMEN

Sexual systems are surprisingly diverse, considering the ubiquity of sexual reproduction. Sequential hermaphroditism, the ability of an individual to change sex, has emerged multiple times independently across the animal kingdom. In molluscs, repeated shifts between ancestrally separate sexes and hermaphroditism are generally found at the level of family and above, suggesting recruitment of deeply conserved mechanisms. Despite this, molecular mechanisms of sexual development are poorly known. In molluscs with separate sexes, endocrine disrupting toxins bind the retinoid X receptor (RXR), activating ectopic male development in females, suggesting the retinoid pathway as a candidate controlling sexual transitions in sequential hermaphrodites. We therefore tested the role of retinoic acid signaling in sequentially hermaphroditic Crepidula snails, which develop first into males, then change sex, maturing into females. We show that retinoid agonists induce precocious penis growth in juveniles and superimposition of male development in females. Combining RXR antagonists with retinoid agonists significantly reduces penis length in induced juveniles, while similar treatments using retinoic acid receptor (RAR) antagonists increase penis length. Transcripts of both receptors are expressed in the induced penis. Our findings therefore show that retinoid signaling can initiate molluscan male genital development, and regulate penis length. Further, we show that retinoids induce ectopic male development in multiple Crepidula species. Species-specific influence of conspecific induction of sexual transitions correlates with responsiveness to retinoids. We propose that retinoid signaling plays a conserved role in molluscan male development, and that shifts in the timing of retinoid signaling may have been important for the origins of sequential hermaphroditism within molluscs.


Asunto(s)
Organismos Hermafroditas/crecimiento & desarrollo , Retinoides/metabolismo , Caracoles/crecimiento & desarrollo , Caracoles/metabolismo , Animales , Familia 26 del Citocromo P450/genética , Femenino , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Masculino , Pene/crecimiento & desarrollo , Pene/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/agonistas , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transducción de Señal , Caracoles/anatomía & histología , Caracoles/genética , Especificidad de la Especie , Tretinoina/metabolismo , Compuestos de Trialquiltina/farmacología
4.
Genesis ; 59(1-2): e23411, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33576188

RESUMEN

Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.


Asunto(s)
Córnea/citología , Enfermedades de la Córnea/patología , Modelos Animales de Enfermedad , Trasplante de Células Madre/métodos , Animales , Córnea/metabolismo , Córnea/patología , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/terapia , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Madre/metabolismo , Células Madre/patología , Xenopus laevis , Pez Cebra
5.
Dev Biol ; 463(2): 135-157, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32389712

RESUMEN

BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 â€‹hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Embrión no Mamífero/embriología , Gastrópodos/embriología , Transducción de Señal , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Gastrópodos/genética
6.
BMC Biol ; 18(1): 46, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366250

RESUMEN

BACKGROUND: One hundred years ago, marine organisms were the dominant systems for the study of developmental biology. The challenges in rearing these organisms outside of a marine setting ultimately contributed to a shift towards work on a smaller number of so-called model systems. Those animals are typically non-marine organisms with advantages afforded by short life cycles, high fecundity, and relative ease in laboratory culture. However, a full understanding of biodiversity, evolution, and anthropogenic effects on biological systems requires a broader survey of development in the animal kingdom. To this day, marine organisms remain relatively understudied, particularly the members of the Lophotrochozoa (Spiralia), which include well over one third of the metazoan phyla (such as the annelids, mollusks, flatworms) and exhibit a tremendous diversity of body plans and developmental modes. To facilitate studies of this group, we have previously described the development and culture of one lophotrochozoan representative, the slipper snail Crepidula atrasolea, which is easy to rear in recirculating marine aquaria. Lab-based culture and rearing of larger populations of animals remain a general challenge for many marine organisms, particularly for inland laboratories. RESULTS: Here, we describe the development of an automated marine aquatic rack system for the high-density culture of marine species, which is particularly well suited for rearing filter-feeding animals. Based on existing freshwater recirculating aquatic rack systems, our system is specific to the needs of marine organisms and incorporates robust filtration measures to eliminate wastes, reducing the need for regular water changes. In addition, this system incorporates sensors and associated equipment for automated assessment and adjustment of water quality. An automated feeding system permits precise delivery of liquid food (e.g., phytoplankton) throughout the day, mimicking real-life feeding conditions that contribute to increased growth rates and fecundity. CONCLUSION: This automated system makes laboratory culture of marine animals feasible for both large and small research groups, significantly reducing the time, labor, and overall costs needed to rear these organisms.


Asunto(s)
Acuicultura/métodos , Biología Marina/métodos , Caracoles , Zoología/métodos , Animales , Acuicultura/instrumentación , Organismos Acuáticos , Biología Marina/instrumentación , Agua de Mar , Zoología/instrumentación
7.
Dev Dyn ; 248(7): 530-544, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30993812

RESUMEN

BACKGROUND: Numerous sensory nerves in the cornea contribute to normal tissue homeostasis. Interestingly, cells within the basal corneal epithelium can regenerate new lenses in the frog, Xenopus. In this study, we investigated whether cornea sensory nerves or their neuropeptides are important for supporting cornea-lens regeneration. RESULTS: Attempts to sever the trigeminal nerve trunk, which provides sensory nerve branches to the cornea, did not inhibit lens regeneration. However, using this approach we found that it was not possible to completely disrupt sensory innervation, as these nerves are able to quickly regenerate back to the cornea. On the other hand, attenuation of neuropeptide levels with capsaicin was found to significantly inhibit lens regeneration, as visualized by a reduction of Substance P. These treatments also led to a reduction of cornea sensory innervation. Interestingly, inhibition of the Substance P-preferred receptor NK-1 with Spantide II did not affect lens-regeneration rates. CONCLUSIONS: This study provides evidence that cornea nerves support cornea-lens regeneration, which could occur through the release of various neurotrophic factors. Substance P, however, does not appear to be the critical component of this signaling pathway. Further studies are needed to investigate what role other known neurotrophic factors may play in this process.


Asunto(s)
Córnea/inervación , Cristalino/inervación , Regeneración , Animales , Córnea/fisiología , Cristalino/fisiología , Regeneración/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Sustancia P/análogos & derivados , Sustancia P/farmacología , Traumatismos del Nervio Trigémino , Xenopus laevis
8.
Mol Biol Evol ; 35(7): 1563-1575, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29579253

RESUMEN

In this review, we compare and contrast the three different forms of vertebrate lens regeneration: Wolffian lens regeneration, cornea-lens regeneration, and lens regeneration from lens epithelial cells. An examination of the diverse cellular origins of these lenses, their unique phylogenetic distribution, and the underlying molecular mechanisms, suggests that these different forms of lens regeneration evolved independently and utilize neither conserved nor convergent mechanisms to regulate these processes.


Asunto(s)
Anfibios/fisiología , Cristalino/fisiología , Regeneración , Transducción de Señal , Animales , Filogenia
9.
Exp Eye Res ; 187: 107767, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31437439

RESUMEN

Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells. We do not yet fully understand how CESCs heal wounds or how transplanted CESCs are able to restore transparency in LSCD patients. A major hurdle has been the lack of vertebrate models to study CESCs. Here we utilized a short treatment with Psoralen AMT (a DNA cross-linker), immediately followed by UV treatment (PUV treatment), to establish a novel frog model that recapitulates the characteristics of cornea stem cell deficiency, such as pigment cell invasion from the periphery, corneal opacity, and neovascularization. These PUV treated whole corneas do not regain transparency. Moreover, PUV treatment leads to appearance of the Tcf7l2 labeled subset of apical skin cells in the cornea region. PUV treatment also results in increased cell death, immediately following treatment, with pyknosis as a primary mechanism. Furthermore, we show that PUV treatment causes depletion of p63 expressing basal epithelial cells, and can stimulate mitosis in the remaining cells in the cornea region. To study the response of CESCs, we created localized PUV damage by focusing the UV radiation on one half of the cornea. These cases initially develop localized stem cell deficiency characteristics on the treated side. The localized PUV treatment is also capable of stimulating some mitosis in the untreated (control) half of those corneas. Unlike the whole treated corneas, the treated half is ultimately able to recover and corneal transparency is restored. Our study provides insight into the response of cornea cells following stem cell depletion, and establishes Xenopus as a suitable model for studying CESCs, stem cell deficiency, and other cornea diseases. This model will also be valuable for understanding the nature of transplanted CESCs, which will lead to progress in the development of therapeutics for LSCD.


Asunto(s)
Córnea/fisiología , Enfermedades de la Córnea/fisiopatología , Epitelio Corneal/patología , Células Madre/patología , Cicatrización de Heridas/fisiología , Animales , Proliferación Celular , Reactivos de Enlaces Cruzados/toxicidad , Modelos Animales de Enfermedad , Epitelio Corneal/efectos de los fármacos , Ficusina/toxicidad , Técnica del Anticuerpo Fluorescente Indirecta , Homeostasis/fisiología , Etiquetado Corte-Fin in Situ , Fenotipo , Regeneración/fisiología , Células Madre/efectos de los fármacos , Rayos Ultravioleta , Xenopus laevis
10.
Exp Eye Res ; 184: 107-125, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30981716

RESUMEN

Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and ß1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.


Asunto(s)
Biomarcadores/metabolismo , Epitelio Corneal/metabolismo , Proteínas del Ojo/metabolismo , Larva/metabolismo , Xenopus laevis/metabolismo , Animales , Western Blotting , Immunoblotting , Metamorfosis Biológica , Microscopía Fluorescente , Células Madre/metabolismo , Factores de Transcripción/metabolismo
11.
Dev Dyn ; 247(10): 1097-1120, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30133032

RESUMEN

BACKGROUND: Spiralians (e.g., annelids, molluscs, and flatworms) possess two sources of mesoderm. One is from endodermal precursors (endomesoderm), which is considered to be the ancestral source in metazoans. The second is from ectoderm (ectomesoderm) and may represent a novel cell type in the Spiralia. In the mollusc Crepidula fornicata, ectomesoderm is derived from micromere daughters within the A and B cell quadrants. Their progeny lie along the anterolateral edges of the blastopore. There they undergo epithelial-mesenchymal transition (EMT), become rounded and undergo delamination/ingression. Subsequently, they assume the mesenchymal phenotype, and migrate beneath the surface ectoderm to differentiate various cell types, including muscles and pigment cells. RESULTS: We examined expression of several genes whose homologs are known to regulate Type 1 EMT in other metazoans. Most of these genes were expressed within spiralian ectomesoderm during EMT. CONCLUSIONS: We propose that spiralian ectomesoderm, which exhibits analogous cellular behaviors to other populations of mesenchymal cells, may be controlled by the same genes that drive EMT in other metazoans. Perhaps these genes comprise a conserved metazoan EMT gene regulatory network (GRN). This study represents the first step in elucidating the GRN controlling the development of a novel spiralian cell type (ectomesoderm). Developmental Dynamics 247:1097-1120, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Anélidos/crecimiento & desarrollo , Transición Epitelial-Mesenquimal/genética , Mesodermo/citología , Animales , Anélidos/citología , Anélidos/genética , Evolución Biológica , Ectodermo/citología , Endodermo/citología , Redes Reguladoras de Genes/fisiología
12.
Dev Dyn ; 247(4): 660-671, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29266590

RESUMEN

BACKGROUND: Mov10 is an RNA helicase that modulates access of Argonaute 2 to microRNA recognition elements in mRNAs. We examined the role of Mov10 in Xenopus laevis development and show a critical role for Mov10 in gastrulation and in the development of the central nervous system (CNS). RESULTS: Knockdown of maternal Mov10 in Xenopus embryos using a translation blocking morpholino led to defects in gastrulation and the development of notochord and paraxial mesoderm, and a failure to neurulate. RNA sequencing of the Mov10 knockdown embryos showed significant upregulation of many mRNAs when compared with controls at stage 10.5 (including those related to the cytoskeleton, adhesion, and extracellular matrix, which are involved in those morphogenetic processes). Additionally, the degradation of the miR-427 target mRNA, cyclin A1, was delayed in the Mov10 knockdowns. These defects suggest that Mov10's role in miRNA-mediated regulation of the maternal to zygotic transition could lead to pleiotropic effects that cause the gastrulation defects. Additionally, the knockdown of zygotic Mov10 showed that it was necessary for normal head, eye, and brain development in Xenopus consistent with a recent study in the mouse. CONCLUSIONS: Mov10 is essential for gastrulation and normal CNS development. Developmental Dynamics 247:660-671, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Gastrulación , ARN Helicasas/fisiología , Animales , Embrión no Mamífero , Mesodermo/crecimiento & desarrollo , Notocorda/crecimiento & desarrollo , Xenopus laevis/embriología
13.
Dev Biol ; 431(2): 282-296, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887017

RESUMEN

During development in metazoan embryos, the fundamental embryonic axes are established by organizing centers that influence the fates of nearby cells. Among the spiralians, a large and diverse branch of protostome metazoans, studies have shown that an organizer sets up the dorsal-ventral axis, which arises from one of the four basic cell quadrants during development (the dorsal, D quadrant). Studies in a few species have also revealed variation in terms of how and when the D quadrant and the organizer are established. In some species the D quadrant is specified conditionally, via cell-cell interactions, while in others it is specified autonomously, via asymmetric cell divisions (such as those involving the formation of polar lobes). The third quartet macromere (3D) typically serves as the spiralian organizer; however, other cells born earlier or later in the D quadrant lineage can serve as the organizer, such as the 2d micromere in the annelid Capitella teleta or the 4d micromere in the mollusc Crepidula fornicata. Here we present work carried out in the snail C. fornicata to show that establishment of a single D quadrant appears to rely on a combination of both autonomous (via inheritance of the polar lobe) and conditional mechanisms (involving induction via the progeny of the first quartet micromeres). Through systematic ablation of cells, we show that D quadrant identity is established between 5th and 6th cleavage stages, as it is in other spiralians that use conditional specification. Subsequently, following the next cell cycle, organizer activity takes place soon after the birth of the 4d micromere. Therefore, unlike the case in other spiralians that use conditional specification, the specification of the D quadrant and the activity of the dorso-ventral organizer are temporally and spatially uncoupled. We also present data on organizer function in naturally-occurring and experimentally-induced twin embryos, which possess multiple D quadrants. We show that supernumerary D quadrants can arise in C. fornicata (either spontaneously or following polar lobe removal); when multiple D quadrants are present these do not exhibit effective organizer activity. We conclude that the polar lobe is not required for D quadrant specification, though it could play a role in effective organizer activity. We also tested whether the inheritance of the small polar lobe by the D quadrant is associated with the ability to laterally inhibit neighboring quadrants by direct contact in order to normally prevent supernumerary organizers from arising. Finally, we discuss the variation of spiralian organizers in a phylogenetic context.


Asunto(s)
Organismos Acuáticos/citología , Organismos Acuáticos/crecimiento & desarrollo , Gastrópodos/citología , Gastrópodos/embriología , Organizadores Embrionarios/citología , Organizadores Embrionarios/embriología , Animales , Fase de Segmentación del Huevo/citología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Factores de Tiempo
14.
BMC Evol Biol ; 17(1): 217, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28915788

RESUMEN

BACKGROUND: The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. RESULTS: This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. CONCLUSIONS: This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.


Asunto(s)
Caracoles/citología , Caracoles/crecimiento & desarrollo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Cilios/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Morfogénesis , Caracoles/metabolismo
15.
Mol Reprod Dev ; 84(11): 1218-1229, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29068507

RESUMEN

The maternal-zygotic transition (MZT) describes the developmental reprogramming of gene expression marked by the degradation of maternally supplied gene products and activation of the zygotic genome. While the timing and duration of the MZT vary among taxa, little is known about early-stage transcriptional dynamics in the non-bilaterian phylum Ctenophora. We sought to better understand the extent of maternal mRNA loading and subsequent differential transcript abundance during the earliest stages of development by performing comprehensive RNA-sequencing-based analyses of mRNA abundance in single- and eight-cell stage embryos in the lobate ctenophore Mnemiopsis leidyi. We found 1,908 contigs with significant differential abundance between single- and eight-cell stages, of which 1,208 contigs were more abundant at the single-cell stage and 700 contigs were more abundant at the eight-cell stage. Of the differentially abundant contigs, 267 were exclusively present in the eight-cell samples, providing strong evidence that both the MZT and zygotic genome activation (ZGA) have commenced by the eight-cell stage. Many highly abundant transcripts encode genes involved in molecular mechanisms critical to the MZT, such as maternal transcript degradation, serine/threonine kinase activity, and chromatin remodeling. Our results suggest that chromosomal restructuring, which is critical to ZGA and the initiation of transcriptional regulation necessary for normal development, begins by the third cleavage within 1.5 hr post-fertilization in M. leidyi.


Asunto(s)
Blastómeros/metabolismo , Ctenóforos/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma , Cigoto/metabolismo , Animales , Blastómeros/citología , Ctenóforos/genética , Embrión no Mamífero/citología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Cigoto/citología
16.
Proc Natl Acad Sci U S A ; 111(45): 15912-7, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349411

RESUMEN

Uncovering the quantitative laws that govern the growth and division of single cells remains a major challenge. Using a unique combination of technologies that yields unprecedented statistical precision, we find that the sizes of individual Caulobacter crescentus cells increase exponentially in time. We also establish that they divide upon reaching a critical multiple (≈ 1.8) of their initial sizes, rather than an absolute size. We show that when the temperature is varied, the growth and division timescales scale proportionally with each other over the physiological temperature range. Strikingly, the cell-size and division-time distributions can both be rescaled by their mean values such that the condition-specific distributions collapse to universal curves. We account for these observations with a minimal stochastic model that is based on an autocatalytic cycle. It predicts the scalings, as well as specific functional forms for the universal curves. Our experimental and theoretical analysis reveals a simple physical principle governing these complex biological processes: a single temperature-dependent scale of cellular time governs the stochastic dynamics of growth and division in balanced growth conditions.


Asunto(s)
Caulobacter crescentus/crecimiento & desarrollo , División Celular/fisiología , Modelos Biológicos , Procesos Estocásticos
17.
J Bacteriol ; 198(1): 187-200, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26483520

RESUMEN

UNLABELLED: An ability to sense and respond to changes in extracellular phosphate is critical for the survival of most bacteria. For Caulobacter crescentus, which typically lives in phosphate-limited environments, this process is especially crucial. Like many bacteria, Caulobacter responds to phosphate limitation through a conserved two-component signaling pathway called PhoR-PhoB, but the direct regulon of PhoB in this organism is unknown. Here we used chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) to map the global binding patterns of the phosphate-responsive transcriptional regulator PhoB under phosphate-limited and -replete conditions. Combined with genome-wide expression profiling, our work demonstrates that PhoB is induced to regulate nearly 50 genes under phosphate-starved conditions. The PhoB regulon is comprised primarily of genes known or predicted to help Caulobacter scavenge for and import inorganic phosphate, including 15 different membrane transporters. We also investigated the regulatory role of PhoU, a widely conserved protein proposed to coordinate phosphate import with expression of the PhoB regulon by directly modulating the histidine kinase PhoR. However, our studies show that it likely does not play such a role in Caulobacter, as PhoU depletion has no significant effect on PhoB-dependent gene expression. Instead, cells lacking PhoU exhibit striking accumulation of large polyphosphate granules, suggesting that PhoU participates in controlling intracellular phosphate metabolism. IMPORTANCE: The transcription factor PhoB is widely conserved throughout the bacterial kingdom, where it helps organisms respond to phosphate limitation by driving the expression of a battery of genes. Most of what is known about PhoB and its target genes is derived from studies of Escherichia coli. Our work documents the PhoB regulon in Caulobacter crescentus, and comparison to the regulon in E. coli reveals significant differences, highlighting the evolutionary plasticity of transcriptional responses driven by highly conserved transcription factors. We also demonstrated that the conserved protein PhoU, which is implicated in bacterial persistence, does not regulate PhoB activity, as previously suggested. Instead, our results favor a model in which PhoU affects intracellular phosphate accumulation, possibly through the high-affinity phosphate transporter.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfatos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Epítopos , Regulación Bacteriana de la Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana/genética , Mutación , Mapas de Interacción de Proteínas , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma
18.
Annu Rev Microbiol ; 65: 261-86, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21663441

RESUMEN

Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Genómica , Secuencia de Aminoácidos , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/metabolismo , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
19.
Exp Eye Res ; 152: 94-99, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27569373

RESUMEN

The frog, Xenopus laevis, is capable of completely regenerating a lens from the cornea epithelium. Because this ability appears to be limited to the larval stages of Xenopus, virtually all the work to understand the mechanisms regulating this process has been limited to pre-metamorphic tadpoles. It has been reported that the post-metamorphic cornea is competent to regenerate under experimental conditions, despite the fact that the in vivo capacity to regenerate is lost; however, that work didn't examine the regenerative potential of different regions of the cornea. A new model suggests that cornea-lens regeneration in Xenopus may be driven by oligopotent stem cells, and not by transdifferentiation of mature cornea cells. We investigated the regenerative potential of the limbal region in post-metamorphic cornea, where the stem cells of the cornea are thought to reside. Using EdU (5-Ethynyl-2'-deoxyuridine), we identified long-term label retaining cells in the basal cells of peripheral post-metamorphic Xenopus cornea, consistent with slow-cycling stem cells of the limbus that have been described in other vertebrates. Using this data to identify putative stem cells of the limbal region in Xenopus, we tested the regenerative competency of limbal regions and central cornea. These regions showed a similarly high ability for the cells of the basal epithelium to express lens proteins when cultured in proximity to larval retina. Thus, the regenerative competency in the post-metamorphic cornea is not restricted to stem cells of the limbal region, but also occurs in the transit amplifying cells throughout the basal layer of the cornea epithelium.


Asunto(s)
Epitelio Corneal/citología , Cristalino/citología , Limbo de la Córnea/citología , Regeneración/fisiología , Animales , Diferenciación Celular , Transdiferenciación Celular , Metamorfosis Biológica , Xenopus laevis
20.
Exp Eye Res ; 145: 206-215, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26778749

RESUMEN

The frog, Xenopus laevis, possesses a high capacity to regenerate various larval tissues, including the lens, which is capable of complete regeneration from the cornea epithelium. However, the molecular signaling mechanisms of cornea-lens regeneration are not fully understood. Previous work has implicated the involvement of the Wnt signaling pathway, but molecular studies have been very limited. Iris-derived lens regeneration in the newt (Wolffian lens regeneration) has shown a necessity for active Wnt signaling in order to regenerate a new lens. Here we provide evidence that the Wnt signaling pathway plays a different role in the context of cornea-lens regeneration in Xenopus. We examined the expression of frizzled receptors and wnt ligands in the frog cornea epithelium. Numerous frizzled receptors (fzd1, fzd2, fzd3, fzd4, fzd6, fzd7, fzd8, and fzd10) and wnt ligands (wnt2b.a, wnt3a, wnt4, wnt5a, wnt5b, wnt6, wnt7b, wnt10a, wnt11, and wnt11b) are expressed in the cornea epithelium, demonstrating that this tissue is transcribing many of the ligands and receptors of the Wnt signaling pathway. When compared to flank epithelium, which is lens regeneration incompetent, only wnt11 and wnt11b are different (present only in the cornea epithelium), identifying them as potential regulators of cornea-lens regeneration. To detect changes in canonical Wnt/ß-catenin signaling occurring within the cornea epithelium, axin2 expression was measured over the course of regeneration. axin2 is a well-established reporter of active Wnt/ß-catenin signaling, and its expression shows a significant decrease at 24 h post-lentectomy. This decrease recovers to normal endogenous levels by 48 h. To test whether this signaling decrease was necessary for lens regeneration to occur, regenerating eyes were treated with either 6-bromoindirubin-3'-oxime (BIO) or 1-azakenpaullone - both activators of Wnt signaling - resulting in a significant reduction in the percentage of cases with successful regeneration. In contrast, inhibition of Wnt signaling using either the small molecule IWR-1, treatment with recombinant human Dickkopf-1 (rhDKK1) protein, or transgenic expression of Xenopus DKK1, did not significantly affect the percentage of successful regeneration. Together, these results suggest a model where Wnt/ß-catenin signaling is active in the cornea epithelium and needs to be suppressed during early lens regeneration in order for these cornea cells to give rise to a new lentoid. While this finding differs from what has been described in the newt, it closely resembles the role of Wnt signaling during the initial formation of the lens placode from the surface ectoderm during early embryogenesis.


Asunto(s)
Cristalino/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Animales , Proteína Axina/metabolismo , Epitelio Corneal/metabolismo , Receptores Frizzled/metabolismo , Humanos , Cristalino/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA