Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 17(1): 29, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093732

RESUMEN

BACKGROUND: Originally, the cranks of a handcycle were mounted with a 180° phase shift (asynchronous). However, as handcycling became more popular, the crank mode switched to a parallel mounting (synchronous) over the years. Differences between both modes have been investigated, however, not into great detail for propulsion technique or practice effects. Our aim is to compare both crank modes from a biomechanical and physiological perspective, hence considering force and power production as a cause of physiological outcome measures. This is done within a practice protocol, as it is expected that motor learning takes place in the early stages of handcycling in novices. METHODS: Twelve able-bodied male novices volunteered to take part. The experiment consisted of a pre-test, three practice sessions and a post-test, which was subsequently repeated for both crank modes in a counterbalanced manner. In each session the participants handcycled for 3 × 4 minutes on a leveled motorized treadmill at 1.94 m/s. Inbetween sessions were 2 days of rest. 3D forces, handlebar and crank angle were measured on the left hand side. Kinematic markers were placed on the handcycle to monitor the movement on the treadmill. Lastly, breath-by-breath spirometry combined with heart-rate were continuously measured. The effects of crank mode and practice-based learning were analyzed using a two way repeated measures ANOVA, with synchronous vs asynchronous and pre-test vs post-test as within-subject factors. RESULTS: In the pre-test, asynchronous handcycling was less efficient than synchronous handcycling in terms of physiological strain, force production and timing. At the post-test, the metabolic costs were comparable for both modes. The force production was, also after practice, more efficient in the synchronous mode. External power production, crank rotation velocity and the distance travelled back and forwards on the treadmill suggest that asynchronous handcycling is more constant throughout the cycle. CONCLUSIONS: As the metabolic costs were reduced in the asynchronous mode, we would advise to include a practice period, when comparing both modes in scientific experiments. For handcycle users, we would currently advise a synchronous set-up for daily use, as the force production is more effective in the synchronous mode, even after practice.


Asunto(s)
Fenómenos Biomecánicos , Mano , Movimiento/fisiología , Mano/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Silla de Ruedas , Adulto Joven
2.
PLoS One ; 12(8): e0183502, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28841704

RESUMEN

BACKGROUND: With the introduction of an add-on handcycle, a crank system that can be placed in front of a wheelchair, handcycling was made widely available for daily life. With it, people go into town more easily, e.g. to do groceries; meet up with friends, etc. They have more independency and can be socially active. Our aim is to explore some settings of the handcycle, so that it can be optimally used as a transportation device. Therefore, the effects of cadence and added resistance on gross mechanical efficiency and force application during sub-maximal synchronous handcycling were investigated. We hypothesized that a cadence of 52 rpm with a higher resistance (35 W) would lead to a higher gross mechanical efficiency and a more tangential force application than a higher cadence of 70 rpm and no extra resistance (15 W). METHODS: Twelve able-bodied men rode in an instrumented add-on handcycle on a motorized level treadmill at 1.94 m/s. They performed three sessions of three four-minute blocks of steady state exercise. Gear (70, 60 and 52 rpm) was changed in-between the blocks and resistance (rolling resistance +0 W, +10 W, +20 W) was changed across sessions, both in a counterbalanced order. 3D force production, oxygen uptake and heart rate were measured continuously. Gross mechanical efficiency (ME) and fraction of effective force (FEF) were calculated as main outcomes. The effects of cadence and resistance were analyzed using a repeated measures ANOVA (P<0.05) with Bonferroni-corrected post-hoc pairwise comparisons. RESULTS: With a decrease in cadence a slight increase in ME (70 rpm: 5.5 (0.2)%, 60 rpm: 5.7 (0.2)%, 52 rpm: 5.8 (0.2)%, P = 0.008, η2p = 0.38), while an increase in FEF (70 rpm: 58.0 (3.2)%, 60 rpm: 66.0 (2.8)%, 52 rpm: 71.3 (2.3)%, P<0.001, η2p = 0.79) is seen simultaneously. Also with an increase in resistance an increase in ME (+0 W: 4.0 (0.2)%, +10 W: 6.0 (0.3)%, +20 W: 7.0 (0.2)%, P<0.001, η2p = 0.92) and FEF (+0 W: 59.0 (2.9)%, +10 W: 66.1 (3.4)%, +20 W: 70.2 (2.4)%, P<0.001, η2p = 0.56) was found. INTERPRETATION: A cadence of 52 rpm against a higher resistance of about 35 W leads to a more optimal direction of forces and is more mechanically efficient than propelling at a higher cadence or lower resistance. Therefore, changing gears on a handcycle is important, and it is advised to keep the linear hand velocity relatively low for locomotion purposes.


Asunto(s)
Esfuerzo Físico , Silla de Ruedas , Adulto , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA