Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495324

RESUMEN

Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-µs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.


Asunto(s)
Fusión de Membrana , Proteínas SNARE/metabolismo , Metabolismo Energético
2.
Small ; 15(21): e1900725, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30977975

RESUMEN

Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.


Asunto(s)
Microfluídica/métodos , Impresión Tridimensional , Dimetilpolisiloxanos/química , Recuperación de Fluorescencia tras Fotoblanqueo , Membrana Dobles de Lípidos/química
3.
Biochem Biophys Res Commun ; 488(1): 53-59, 2017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28476622

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regarding the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteínas SNARE/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Fusión de Membrana , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo
4.
J Am Chem Soc ; 138(13): 4512-21, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26987363

RESUMEN

Membrane fusion is mediated by the SNARE complex which is formed through a zippering process. Here, we developed a chemical controller for the progress of membrane fusion. A hemifusion state was arrested by a polyphenol myricetin which binds to the SNARE complex. The arrest of membrane fusion was rescued by an enzyme laccase that removes myricetin from the SNARE complex. The rescued hemifusion state was metastable and long-lived with a decay constant of 39 min. This membrane fusion controller was applied to delineate how Ca(2+) stimulates fusion-pore formation in a millisecond time scale. We found, using a single-vesicle fusion assay, that such myricetin-primed vesicles with synaptotagmin 1 respond synchronously to physiological concentrations of Ca(2+). When 10 µM Ca(2+) was added to the hemifused vesicles, the majority of vesicles rapidly advanced to fusion pores with a time constant of 16.2 ms. Thus, the results demonstrate that a minimal exocytotic membrane fusion machinery composed of SNAREs and synaptotagmin 1 is capable of driving membrane fusion in a millisecond time scale when a proper vesicle priming is established. The chemical controller of SNARE-driven membrane fusion should serve as a versatile tool for investigating the differential roles of various synaptic proteins in discrete fusion steps.


Asunto(s)
Calcio/metabolismo , Proteínas SNARE/metabolismo , Animales , Exocitosis , Flavonoides/metabolismo , Lacasa/metabolismo , Fusión de Membrana , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Ratas , Sinaptotagmina I/metabolismo
5.
Antimicrob Agents Chemother ; 60(4): 2232-40, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26810657

RESUMEN

Bacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial. We found that amplification of the fumarate reductase operon (FRD) inEscherichia coliled to a higher frequency of persister formation. The persister frequency ofE. coliwas increased when the cells contained elevated levels of intracellular fumarate. Genetic perturbations of the electron transport chain (ETC), a metabolite supplementation assay, and even the toxin-antitoxin-relatedhipA7mutation indicated that surplus fumarate markedly elevated theE. colipersister frequency. AnE. colistrain lacking succinate dehydrogenase (SDH), thereby showing a lower intracellular fumarate concentration, was killed ∼1,000-fold more effectively than the wild-type strain in the stationary phase. It appears thatSDHandFRDrepresent a paired system that gives rise to and maintainsE. colipersisters by producing and utilizing fumarate, respectively.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Succinato Deshidrogenasa/genética , Ampicilina/farmacología , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Escherichia coli/enzimología , Escherichia coli/genética , Fumaratos/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Norfloxacino/farmacología , Operón , Succinato Deshidrogenasa/deficiencia
6.
Biochem Biophys Res Commun ; 465(4): 864-70, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26319432

RESUMEN

Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins generate energy required for membrane fusion. They form a parallelly aligned four-helix bundle called the SNARE complex, whose formation is initiated from the N terminus and proceeds toward the membrane-proximal C terminus. Previously, we have shown that this zippering-like process can be controlled by several flavonoids that bind to the intermediate structures formed during the SNARE zippering. Here, our aim was to test whether the fluorescence resonance energy transfer signals that are observed during the inner leaflet mixing assay indeed represent the hemifused vesicles. We show that changes in vesicle size accompanying the merging of bilayers is a good measure of progression of the membrane fusion. Two merging vesicles with the same size D in diameter exhibited their hydrodynamic diameters 2D + d (d, intermembrane distance), 2D and 2D as membrane fusion progressed from vesicle docking to hemifusion and full fusion, respectively. A dynamic light scattering assay of membrane fusion suggested that myricetin stopped membrane fusion at the hemifusion state, whereas delphinidin and cyanidin prevented the docking of the vesicles. These results are consistent with our previous findings in fluorescence resonance energy transfer assays.


Asunto(s)
Flavonoides/metabolismo , Fusión de Membrana/fisiología , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animales , Dispersión Dinámica de Luz , Flavonoides/farmacología , Transferencia Resonante de Energía de Fluorescencia , Hidrodinámica , Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana/efectos de los fármacos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Biochem Biophys Res Commun ; 450(1): 831-6, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24960195

RESUMEN

Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca(2+)-independent manner, while myricetin inhibits Ca(2+)-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Leucina Zippers/efectos de los fármacos , Fusión de Membrana/fisiología , Neuronas/metabolismo , Polifenoles/farmacología , Proteínas SNARE/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Células PC12 , Ratas
8.
Biochem J ; 450(3): 537-46, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23252429

RESUMEN

Anti-allergic effects of dietary polyphenols were extensively studied in numerous allergic disease models, but the molecular mechanisms of anti-allergic effects by polyphenols remain poorly understood. In the present study, we show that the release of granular cargo molecules, contained in distinct subsets of granules of mast cells, is specifically mediated by two sets of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, and that various polyphenols differentially inhibit the formation of those SNARE complexes. Expression analysis of RBL-2H3 cells for 11 SNARE genes and a lipid mixing assay of 24 possible combinations of reconstituted SNAREs indicated that the only two active SNARE complexes involved in mast cell degranulation are Syn (syntaxin) 4/SNAP (23 kDa synaptosome-associated protein)-23/VAMP (vesicle-associated membrane protein) 2 and Syn4/SNAP-23/VAMP8. Various polyphenols selectively or commonly interfered with ternary complex formation of these two SNARE complexes, thereby stopping membrane fusion between granules and plasma membrane. This led to the differential effect of polyphenols on degranulation of three distinct subsets of granules. These results suggest the possibility that formation of a variety of SNARE complexes in numerous cell types is controlled by polyphenols which, in turn, might regulate corresponding membrane trafficking.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Mastocitos/efectos de los fármacos , Polifenoles/farmacología , Proteínas SNARE/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Histamina/metabolismo , Humanos , Mastocitos/metabolismo , Mastocitos/fisiología , Complejos Multiproteicos/metabolismo , Polifenoles/metabolismo , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Vesículas Transportadoras/clasificación , Vesículas Transportadoras/fisiología , beta-N-Acetilhexosaminidasas/metabolismo
9.
Appl Microbiol Biotechnol ; 97(5): 2029-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22911091

RESUMEN

Kluyveromyces marxianus is now considered one of the best choices of option for industrial applications of yeast because the strain is able to grow at high temperature, utilizes various carbon sources, and grows fast. However, the use of K. marxianus as a host for industrial applications is still limited. This limitation is largely due to a lack of knowledge on the characteristics of the promoters since the time and amount of protein expression is strongly dependent on the promoter employed. In this study, four well-known constitutive promoters (P(CYC), P(TEF), P(GPD), and P(ADH)) of Saccharomyces cerevisiae were characterized in K. marxianus in terms of protein expression level and their stochastic behavior. After constructing five URA3-auxotrophic K. marxianus strains and a plasmid vector, four cassettes each comprising one of the promoters--the gene for the green fluorescence protein (GFP)--CYC1 terminator (T(CYC)) were inserted into the vector. GFP expression under the control of each one of the promoters was analyzed by reverse transcription PCR, fluorescence microscopy, and flow cytometer. Using these combined methods, the promoter strength was determined to be in the order of P(GPD) > P(ADH) ∼ P(TEF) >> P(CYC). All promoters except for the P(CYC) exhibited three distinctive populations, including non-expressing cells, weakly expressing cells, and strongly expressing cells. The relative ratios between populations were strongly dependent on the promoter and culture time. Forward scattering was independent of GFP fluorescence intensity, indicating that the different fluorescence intensities were not just due to different cell sizes derived from budding. It also excluded the possibility that the non-expressing cells resulted from plasmid loss because plasmid stability was maintained at almost 100 % over the culture time. The same cassettes, cloned into a single copy plasmid pRS416 and transformed into S. cerevisiae, showed only one population. When the cassettes were integrated into the chromosome, the stochastic behavior was markedly reduced. These combined results imply that the gene expression stochasticity should be overcome in order to use this strain for delicate metabolic engineering, which would require the co-expression of several genes.


Asunto(s)
Expresión Génica , Kluyveromyces/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Fusión Artificial Génica , Genes Reporteros , Vectores Genéticos , Inestabilidad Genómica , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Plásmidos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
10.
Cell Rep ; 42(1): 111921, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640319

RESUMEN

Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas
11.
Cell Rep ; 42(12): 113528, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38041817

RESUMEN

Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.


Asunto(s)
Apolipoproteína L1 , Membranas Mitocondriales , Apolipoproteína L1/genética , Membranas Mitocondriales/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Dinámicas Mitocondriales
12.
Planta Med ; 78(3): 233-6, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109835

RESUMEN

Most cosmetic and therapeutic applications of Clostridium botulinum neurotoxin (BoNT) are related to muscle paralysis caused by the blocking of neurotransmitter release at the neuromuscular junction. BoNT specifically cleaves SNARE proteins at the nerve terminal and impairs neuroexocytosis. Recently, we have shown that several polyphenols inhibit neurotransmitter release from neuronal PC12 cells by interfering with SNARE complex formation. Based on our previous result, we report here that myricetin, delphinidin, and cyanidin indeed paralyze muscle by inhibiting acetylcholine release at the neuromuscular junction. While the effect of myricetin on muscle paralysis was modest compared to BoNT/A, myricetin exhibited a shorter response time than BoNT/A. Intraperitoneally-injected myricetin at an extreme dose of 1000 mg/kg did not induce death of mice, alleviating the safety issue. Thus, these polyphenols might be useful in treating various human hypersecretion diseases for which BoNT/A has been the only option of choice.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Cosméticos/farmacología , Bloqueantes Neuromusculares/farmacología , Polifenoles/farmacología , Proteínas SNARE/antagonistas & inhibidores , Animales , Antocianinas/farmacología , Femenino , Flavonoides/farmacología , Humanos , Ratones , Fitoterapia , Extractos Vegetales/farmacología , Proteínas SNARE/metabolismo
13.
Pharm Biol ; 50(9): 1157-67, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22881141

RESUMEN

CONTEXT: Botulinum neurotoxins (BoNTs) are popularly used to treat various diseases and for cosmetic purposes. They act by blocking neurotransmission through specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, several polyphenols were shown to interfere with SNARE complex formation by wedging into the hydrophobic core interface, thereby leading to reduced neuroexocytosis. OBJECTIVE: In order to find industrially-viable plant extract that functions like BoNT, 71 methanol extracts of flowers were screened and BoNT-like activity of selected extract was evaluated. MATERIALS AND METHODS: After evaluating the inhibitory effect of 71 flower methanol extracts on SNARE complex formation, seven candidates were selected and they were subjected to SNARE-driven membrane fusion assay. Neurotransmitter release from neuronal PC12 cells and SNARE complex formation inside the cell was also evaluated. Finally, the effect of one selected extract on muscle contraction and digit abduction score was determined. RESULTS: The extract of Potentilla chinensis Ser. (Rosaceae)(Chinese cinquefoil) flower inhibited neurotransmitter release from neuronal PC12 cells by approximately 90% at a concentration of 10 µg/mL. The extract inhibited neuroexocytosis by interfering with SNARE complex formation inside cells. It reduced muscle contraction of phrenic nerve-hemidiaphragm by approximately 70% in 60 min, which is comparable to the action of the Ca²âº-channel blocker verapamil and BoNT type A. DISCUSSION AND CONCLUSION: While BoNT blocks neuroexocytosis by cleaving SNARE proteins, the Potentilla chinensis extract exhibited the same activity by inhibiting SNARE complex formation. The extract paralyzed muscle as efficiently as BoNT, suggesting the potential versatility in cosmetics and therapeutics.


Asunto(s)
Fusión de Membrana/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Fármacos Neuromusculares/farmacología , Neuronas/efectos de los fármacos , Extractos Vegetales/farmacología , Potentilla/química , Proteínas SNARE/antagonistas & inhibidores , Animales , Toxinas Botulínicas/efectos adversos , Toxinas Botulínicas/farmacología , Descubrimiento de Drogas , Exocitosis/efectos de los fármacos , Femenino , Flores/química , Extremidad Inferior , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuromusculares/efectos adversos , Neuronas/metabolismo , Norepinefrina/metabolismo , Células PC12 , Extractos Vegetales/efectos adversos , Ratas , Proteínas SNARE/metabolismo , Transmisión Sináptica/efectos de los fármacos
14.
FEBS Open Bio ; 12(11): 1958-1979, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35622519

RESUMEN

Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Fusión de Membrana/fisiología , Cinética , Modelos Biológicos
15.
Antimicrob Agents Chemother ; 55(11): 5380-3, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21844322

RESUMEN

We show that 3-[4-(4-methoxyphenyl)piperazin-1-yl]piperidin-4-yl biphenyl-4-carboxylate (C10), screened out of a chemical library, selectively kills bacterial persisters that tolerate antibiotic treatment but does not affect normal antibiotic-sensitive cells. C10 led persisters to antibiotic-induced cell death by causing reversion of persisters to antibiotic-sensitive cells. This work is the first demonstration in which the eradication of bacterial persisters is based on single-chemical supplementation. The chemical should be versatile in elucidating the mechanism of persistence.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
16.
Biochem Biophys Res Commun ; 413(1): 105-10, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21872573

RESUMEN

In a phenomenon called persistence, small numbers of bacterial cells survive even after exposure to antibiotics. Recently, bactericidal antibiotics have been demonstrated to kill bacteria by increasing the levels of hydroxyl radicals inside cells. In the present study, we report a direct correlation between intracellular hydroxyl radical formation and bacterial persistence. By conducting flow cytometric analysis in a three-dimensional space, we resolved distinct bacterial populations in terms of intracellular hydroxyl radical levels, morphology and viability. We determined that, upon antibiotic treatment, a small sub-population of Escherichia coli survivors do not overproduce hydroxyl radicals and maintain normal morphology, whereas most bacterial cells were killed by accumulating hydroxyl radicals and displayed filamentous morphology. Our results suggest that bacterial persisters can be formed once they have transient defects in mediating reactions involved in the hydroxyl radical formation pathway. Thus, it is highly probable that persisters do not share a common mechanism but each persister cell respond to antibiotics in different ways, while they all commonly show lowered hydroxyl radical formation and enhanced tolerance to antibiotics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Radical Hidroxilo/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestructura
17.
Commun Biol ; 3(1): 148, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32235856

RESUMEN

Synucleinopathies are neurological diseases that are characterized by the accumulation of aggregates of a cytosolic protein, α-synuclein, at the plasma membrane. Even though the pathological role of the protein is established, the mechanism by which it damages neurons remains unclear due to the difficulty to correctly mimic the plasma membrane in vitro. Using a microfluidic setup in which the composition of the plasma membrane, including the asymmetry of the two leaflets, is recapitulated, we demonstrate a triple action of α-synuclein on the membrane. First, it changes membrane topology by inducing pores of discrete sizes, likely nucleated from membrane-bound proteins and subsequently enlarged by proteins in solution. Second, protein binding to the cytosolic leaflet increases the membrane capacitance by thinning it and/or changing its relative permittivity. Third, α-synuclein insertion inside the membrane hydrophobic core immobilizes the lipids in both leaflets, including the opposing protein-free extracellular one.


Asunto(s)
Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Membranas Artificiales , alfa-Sinucleína/metabolismo , Membrana Celular/patología , Capacidad Eléctrica , Recuperación de Fluorescencia tras Fotoblanqueo , Interacciones Hidrofóbicas e Hidrofílicas , Dispositivos Laboratorio en un Chip , Fluidez de la Membrana , Lípidos de la Membrana/química , Potenciales de la Membrana , Técnicas Analíticas Microfluídicas/instrumentación , Neuronas/metabolismo , Neuronas/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína/química
18.
Nat Commun ; 10(1): 185, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643128

RESUMEN

Membrane-disrupting agents that selectively target virus versus host membranes could potentially inhibit a broad-spectrum of enveloped viruses, but currently such antivirals are lacking. Here, we develop a nanodisc incorporated with a decoy virus receptor that inhibits virus infection. Mechanistically, nanodiscs carrying the viral receptor sialic acid bind to influenza virions and are co-endocytosed into host cells. At low pH in the endosome, the nanodiscs rupture the viral envelope, trapping viral RNAs inside the endolysosome for enzymatic decomposition. In contrast, liposomes containing a decoy receptor show weak antiviral activity due to the lack of membrane disruption. The nanodiscs inhibit influenza virus infection and reduce morbidity and mortality in a mouse model. Our results suggest a new class of antivirals applicable to other enveloped viruses that cause irreversible physical damage specifically to virus envelope by viruses' own fusion machine. In conclusion, the lipid nanostructure provides another dimension for antiviral activity of decoy molecules.


Asunto(s)
Antivirales/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , ARN Viral/metabolismo , Células A549 , Animales , Antivirales/química , Antivirales/uso terapéutico , Bioingeniería/métodos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Perros , Endosomas/metabolismo , Femenino , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/mortalidad , Gripe Humana/virología , Membrana Dobles de Lípidos/química , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Nanoestructuras/química , Oseltamivir/uso terapéutico , Receptores de Superficie Celular/química , Proteínas Virales/química , Virión/efectos de los fármacos , Virión/metabolismo , Internalización del Virus/efectos de los fármacos
19.
Front Mol Neurosci ; 10: 93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28408867

RESUMEN

Neurotransmitters are released within a millisecond after Ca2+ arrives at an active zone. However, the vesicle fusion pathway underlying this synchronous release is yet to be understood. At the center of controversy is whether hemifusion, in which outer leaflets are merged while inner leaflets are still separated, is an on-pathway or off-pathway product of Ca2+-triggered exocytosis. Using the single vesicle fusion assay, we recently demonstrated that hemifusion is an on-pathway intermediate that immediately proceeds to full fusion upon Ca2+ triggering. It has been shown that the flavonoid myricetin arrests soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated vesicle fusion at hemifusion, but that the hemifused vesicles spontaneously convert to full fusion when the myricetin clamp is removed by the enzyme laccase. In the present study, we visualized SNARE-mediated hemifusion between two SNARE-reconstituted giant unilamellar vesicles (GUVs) arrested by myricetin. The large size of the GUVs enabled us to directly image the hemifusion between them. When two merging GUVs were labeled with different fluorescent dyes, GUV pairs showed asymmetric fluorescence intensities depending on the position on the GUV pair consistent with what is expected for hemifusion. The flow of lipids from one vesicle to the other was revealed with fluorescence recovery after photobleaching (FRAP), indicating that the two membranes had hemifused. These results support the hypothesis that hemifusion may be the molecular status that primes Ca2+-triggered millisecond exocytosis. This study represents the first imaging of SNARE-driven hemifusion between GUVs.

20.
J Biotechnol ; 182-183: 30-6, 2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24768798

RESUMEN

Hexanoic acid can be used for diverse industrial applications and is a precursor for fine chemistry. Although some natural microorganisms have been screened and evolved to produce hexanoic acid, the construction of an engineered biosynthetic pathway for producing hexanoic acid in yeast has not been reported. Here we constructed hexanoic acid pathways in Kluyveromyces marxianus by integrating 5 combinations of seven genes (AtoB, BktB, Crt, Hbd, MCT1, Ter, and TES1), by which random chromosomal sites of the strain are overwritten by the new genes from bacteria and yeast. One recombinant strain, H4A, which contained AtoB, BktB, Crt, Hbd, and Ter, produced 154mg/L of hexanoic acid from galactose as the sole substrate. However, the hexanoic acid produced by the H4A strain was re-assimilated during the fermentation due to the reverse activity of AtoB, which condenses two acetyl-CoAs into a single acetoacetyl-CoA. This product instability could be overcome by the replacement of AtoB with a malonyl CoA-acyl carrier protein transacylase (MCT1) from Saccharomyces cerevisiae. Our results suggest that Mct1 provides a slow but stable acetyl-CoA chain elongation pathway, whereas the AtoB-mediated route is fast but unstable. In conclusion, hexanoic acid was produced for the first time in yeast by the construction of chain elongation pathways comprising 5-7 genes in K. marxianus.


Asunto(s)
Caproatos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Ingeniería Metabólica/métodos , Biotecnología , Caproatos/análisis , Etanol/metabolismo , Fermentación , Galactosa/metabolismo , Glucosa/metabolismo , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA