Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 49(19): 11145-11166, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34634819

RESUMEN

Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Mitocondrias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mitocondrial/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Biología Computacional/métodos , Citocromos b/genética , Citocromos b/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Fosforilación Oxidativa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
2.
Nucleic Acids Res ; 44(12): 5785-97, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27257059

RESUMEN

Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.


Asunto(s)
ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocromos b/genética , Citocromos b/metabolismo , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Genoma Mitocondrial , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Fosforilación Oxidativa , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
RNA Biol ; 10(9): 1477-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24184848

RESUMEN

PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Proteínas de Unión al ARN/metabolismo , Simulación por Computador , ADN Mitocondrial/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
4.
Nucleic Acids Res ; 39(18): 8029-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21727087

RESUMEN

Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Mitocondriales , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Secuencias de Aminoácidos , Genoma Fúngico , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Biosíntesis de Proteínas , ARN/metabolismo , Estabilidad del ARN , ARN Mitocondrial , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido
5.
Mol Microbiol ; 81(3): 831-49, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21762218

RESUMEN

Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The Saccharomyces cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, ageing, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumour suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm; however, biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore explored whether nuclear localization is important for Ssd1 cytoplasmic functions. We identified a functional NLS in the N-terminal domain of Ssd1. An Ssd1-derived NLS-GFP fusion protein and several C-terminally truncated Ssd1 proteins, which presumably lack nuclear export sequences, accumulate in the nucleus. Alanine substitution of the Ssd1 NLS prevents Ssd1 nuclear entry, mRNA binding and disrupts Srl1 mRNA localization. Moreover, Ssd1-NLS mutations abolish Ssd1 toxicity in the absence of Cbk1 phosphorylation and cause Ssd1 to localize prominently to cytoplasmic puncta. These data indicate that nuclear shuttling is critical for Ssd1 mRNA binding and Ssd1-mRNA localization in the cytoplasm. Collectively these data support the model that Ssd1 functions analogously to hnRNPs, which bind mRNA co-transcriptionally, are exported to the cytoplasm and target mRNAs to sites of localized translation and P-bodies.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Fusión Artificial Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Señales de Localización Nuclear , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
6.
Eukaryot Cell ; 10(3): 363-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21257794

RESUMEN

Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis.


Asunto(s)
Macronúcleo/metabolismo , Micronúcleo Germinal/metabolismo , Paramecium tetraurelia/metabolismo , Proteínas Protozoarias/metabolismo , Autofecundación , Regulación del Desarrollo de la Expresión Génica , Macronúcleo/genética , Micronúcleo Germinal/genética , Paramecium tetraurelia/genética , Paramecium tetraurelia/crecimiento & desarrollo , Proteínas Protozoarias/genética
7.
Biol Cell ; 100(6): 343-54, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18076379

RESUMEN

BACKGROUND INFORMATION: The CBK1 gene of Saccharomyces cerevisiae encodes a protein kinase that is a member of the NDR (nuclear Dbf2-related) family of protein kinases, which are involved in morphogenesis and cell proliferation. Previous studies have shown that deletion of CBK1 leads to a loss of polarity and the formation of large aggregates of cells. This aggregation phenotype is due to the loss of the daughter cell-specific accumulation of the transcription factor Ace2p, which is responsible for the transcription of genes whose products are necessary for the final separation of the mother and the daughter at the end of cell division. RESULTS: We show that the daughter cell-specific localization of Ace2p does not occur via a specific localization of the ACE2 mRNA and that, in vivo, the transcription of CTS1, one of the principal targets of Ace2p, is daughter cell-specific. We have shown that extragenic suppressors of the Deltacbk1 aggregation phenotype are located in the nuclear exportin CRM1 and ACE2. These mutations disrupt the interaction of Ace2p and Crm1p, thus impairing Ace2p export and resulting in the accumulation of the protein in both mother and daughter cell nuclei. CONCLUSIONS: We propose that in the daughter cell nucleus Cbk1p phosphorylates the Ace2p nuclear export signal, and that this phosphorylation blocks the export of Ace2p via Crm1p, thus promoting the daughter cell-specific nuclear accumulation of Ace2p.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Carioferinas/genética , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , División Celular , Núcleo Celular/genética , Quitinasas/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/análisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinasas , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/análisis , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie , Factores de Transcripción/análisis , Factores de Transcripción/genética , Proteína Exportina 1
8.
Nucleic Acids Res ; 31(18): e109, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12954785

RESUMEN

The ability to extract meaningful information from transcriptome technologies such as cDNA microarrays relies on the precision, sensitivity and reproducibility of the measured values for a given gene across multiple samples. Given the lack of a 'gold standard' for the production of microarrays using current technologies, there is a high degree of variation in the quality of data derived from microarray experiments. Poor reproducibility not only adds to the cost of a given study but also leads to data sets that are difficult to interpret. For glass slide DNA microarrays, much of this variation is introduced systematically, during the spotting, or deposition, of the DNA onto the slide surface. In order to reduce this type of systematic variation we tested spotting solutions containing different detergent additives in the presence of one of two different denaturants and determined their effect on spot quality. We show that spotting cDNA in a solution consisting of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) in the presence of formamide or dimethyl sulfoxide yields spots of superior quality in terms of morphology, size homogeneity and signal reproducibility, as well as overall intensity, when used with popular, commercially available slides.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Carbocianinas/química , Ácidos Cólicos/química , ADN Complementario/química , ADN Complementario/genética , ADN de Hongos/química , ADN de Hongos/genética , Dimetilsulfóxido/química , Formamidas/química , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad , Soluciones/química
9.
FEBS Lett ; 590(20): 3544-3558, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27664110

RESUMEN

Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.


Asunto(s)
Dinaminas/deficiencia , GTP Fosfohidrolasas/deficiencia , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Schizosaccharomyces/enzimología , ADN Mitocondrial/metabolismo , Regulación Fúngica de la Expresión Génica , Dinámicas Mitocondriales , Fenotipo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
FEBS Lett ; 517(1-3): 97-102, 2002 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-12062417

RESUMEN

In Saccharomyces cerevisiae the nicotinic acid moiety of NAD+ can be synthesized from tryptophan using the kynurenine pathway or incorporated directly using nicotinate phosphoribosyl transferase (NPT1). We have identified the genes that encode the enzymes of the kynurenine pathway and for BNA5 (YLR231c) and BNA6 (YFR047c) confirmed that they encode kynureninase and quinolinate phosphoribosyl transferase respectively. We show that deletion of genes encoding kynurenine pathway enzymes are co-lethal with the Deltanpt1, demonstrating that no other pathway for the synthesis of nicotinic acid exists in S. cerevisiae. Also, we show that under anaerobic conditions S. cerevisiae is a nicotinic acid auxotroph.


Asunto(s)
NAD/metabolismo , Niacina/biosíntesis , Saccharomyces cerevisiae/metabolismo , Aerobiosis/fisiología , Anaerobiosis/fisiología , Eliminación de Gen , Genes Fúngicos , Hidrolasas/genética , Hidrolasas/metabolismo , Niacina/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas Cotransportadoras de Sodio-Fosfato , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III , Simportadores/fisiología , Triptófano/metabolismo
12.
Biochimie ; 100: 27-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24262604

RESUMEN

Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Mitocondrias/fisiología , Saccharomyces cerevisiae/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Genoma Mitocondrial , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Recambio Mitocondrial , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Mitochondrion ; 13(6): 871-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23892058

RESUMEN

Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Mitocondrias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Eliminación de Gen , Immunoblotting , Datos de Secuencia Molecular , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Homología de Secuencia de Aminoácido , Regiones Terminadoras Genéticas
14.
BMC Syst Biol ; 5: 173, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22027258

RESUMEN

BACKGROUND: The mitochondrial inner membrane contains five large complexes that are essential for oxidative phosphorylation. Although the structure and the catalytic mechanisms of the respiratory complexes have been progressively established, their biogenesis is far from being fully understood. Very few complex III assembly factors have been identified so far. It is probable that more factors are needed for the assembly of a functional complex, but that the genetic approaches used to date have not been able to identify them. We have developed a systems biology approach to identify new factors controlling complex III biogenesis. RESULTS: We collected all the physical protein-protein interactions (PPI) involving the core subunits, the supernumerary subunits and the assembly factors of complex III and used Cytoscape 2.6.3 and its plugins to construct a network. It was then divided into overlapping and highly interconnected sub-graphs with clusterONE. One sub-graph contained the core and the supernumerary subunits of complex III, it also contained some subunits of complex IV and proteins participating in the assembly of complex IV. This sub-graph was then split with another algorithm into two sub-graphs. The subtraction of these two sub-graphs from the previous sub-graph allowed us to identify a protein of unknown function Usb1p/Ylr132p that interacts with the complex III subunits Qcr2p and Cor1p. We then used genetic and cell biology approaches to investigate the function of Usb1p. Preliminary results indicated that Usb1p is an essential protein with a dual localization in the nucleus and in the mitochondria, and that the over-expression of this protein can compensate for defects in the biogenesis of the respiratory complexes. CONCLUSIONS: Our systems biology approach has highlighted the multiple associations between subunits and assembly factors of complexes III and IV during their biogenesis. In addition, this approach has allowed the identification of a new factor, Usb1p, involved in the biogenesis of respiratory complexes, which could not have been found using classical genetic screens looking for respiratory deficient mutants. Thus, this systems biology approach appears to be a fruitful new way to study the biogenesis of mitochondrial multi-subunit complexes.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Fosforilación Oxidativa , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Biología de Sistemas/métodos
15.
Dalton Trans ; 40(8): 1743-50, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21132182

RESUMEN

A series of gold(I) phosphine complexes of the type [AuCl{PR(2)(R(f))}] (R = Et, i-Pr, Cy; R(f) = CF = CF(2); R = Ph, R(f) = C = CFH, CCl = CF(2), C ≡ CCF(3), CF(3), i-C(3)F(7), s-C(4)F(9)) have been prepared and most have been structurally characterised. All of the complexes are monomeric in the solid state, and a number of secondary interactions are observed--including short intramolecular AuF distances, metal-bound Au-ClH non-classical hydrogen bonds, fluorous domains and phenyl embraces. Only in the case of [AuCl{PEt(2)(CF = CF(2))}] is an aurophilic interaction with an AuAu contact less than the sum of the van der Waals radii observed. Even then, the distance, 3.3458(10) Å, is longer than that previously observed for the related complex with R = Ph; R(f) = CF = CF(2).


Asunto(s)
Compuestos Orgánicos de Oro/química , Fosfinas/química , Cristalografía por Rayos X , Modelos Moleculares , Compuestos Orgánicos de Oro/síntesis química , Fosfinas/síntesis química
16.
Chem Commun (Camb) ; (43): 6658-60, 2009 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19865682

RESUMEN

The reaction of trimethylsilyl-containing phosphanes with perfluoroiodoalkanes provides a general and convenient route to perfluoroalkyl-containing phosphanes.

17.
J Mol Biol ; 387(5): 1081-91, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19245817

RESUMEN

Respiratory complexes III, IV and V are formed by components of both nuclear and mitochondrial origin and are embedded in the inner mitochondrial membrane. Their assembly requires the auxiliary factor Oxa1, and the absence of this protein has severe consequences on these three major respiratory chain enzymes. We have studied, in the yeast Saccharomyces cerevisiae, the effect of the loss of Oxa1 function and of other respiratory defects on the expression of nuclear genes encoding components of the respiratory complexes and tricarboxylic acid cycle enzymes. We observed that the concomitant decrease in the level of two respiratory enzymes, complexes III and IV, led to their repression. These genes are known targets of the transcriptional activator complex Hap2/3/4/5 that plays a central role in the reprogramming of yeast metabolism when cells switch from a fermenting, glucose-repressed state to a respiring, derepressed state. We found that the Hap4 protein, the regulatory subunit of the transcriptional complex, was present at a lower level in the oxa1 mutants whereas no change in HAP4 transcript level was observed, suggesting a posttranscriptional modulation. In addition, an altered mitochondrial morphology was observed in mutants with decreased expression of Hap2/3/4/5 target genes. We suggest that the aberrant mitochondrial morphology, presumably caused by the severely decreased level of at least two respiratory enzymes, might be part of the signalling pathway linking the mitochondrial defect and Hap2/3/4/5.


Asunto(s)
Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo
18.
Genetics ; 183(1): 161-73, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546315

RESUMEN

In Saccharomyces cerevisiae the protein kinase Cbk1p is a member of the regulation of Ace2p and cellular morphogenesis (RAM) network that is involved in cell separation after cytokinesis, cell integrity, and cell polarity. In cell separation, the RAM network promotes the daughter cell-specific localization of the transcription factor Ace2p, resulting in the asymmetric transcription of genes whose products are necessary to digest the septum joining the mother and the daughter cell. RAM and SSD1 play a role in the maintenance of cell integrity. In the presence of a wild-type SSD1 gene, deletion of any RAM component causes cell lysis. We show here that some mutations of CBK1 also lead to a reduced fertility and a reduced expression of some of the mating type-specific genes. As polarized growth is an integral part of the mating process, we have isolated suppressors of the fertility defect. Among these, mutations in BRR1 or MPT5 lead to a restoration of fertility and a more-or-less pronounced restoration of polarity; they also show genetic interactions with SSD1. Our experiments reveal a multilayered system controlling aspects of cell separation, cell integrity, mating, and polarized growth.


Asunto(s)
Fertilidad/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Adhesión Celular/genética , Polaridad Celular/genética , Epistasis Genética/fisiología , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Supresión Genética
19.
Dalton Trans ; (1): 101-14, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-18399236

RESUMEN

The coordination chemistry of the perfluorovinyl phosphines PEt2(CF=CF2), P(i)Pr2(CF=CF2), PCy,(CF=CF2) and PPh(CF=CF2)2 to rhodium(I), palladium(II), and platinum(II) centres has been investigated. The electronic properties of the ligands are estimated based on v(CO) and 1J(Rh-P) values. X-Ray diffraction data for the square-planar Pd(II) and Pt(II) perfluorovinyl-phosphine containing complexes allow estimates of the steric demand for the series of ligands PPh2(CF=CF2), PEt2(CF=CF2), P(i)Pr2(CF=CF2), PCy2(CF=CF2) and PPh(CF=CF2)2 to be determined. The (CF=CF2) fragment is found to be more electron withdrawing than (C6F5) yet sterically less demanding. These ligands therefore provide a range of electron-neutral to phosphite-like electronic properties combined with a range of steric demands. This study also reveals that short intramolecular interactions from the metal centre to the beta-fluorine atom cis to phosphorus of the CF=CF2 groups are observed in all-trans square planar complexes of the ligands. Unusually, the complex [PtCl2{P(i)Pr2(CF=CF2)}2] crystallises with both cis- and trans-isomers present in the unit cell. It appears that co-crystallisation of both isomers occurs in order to maximise fluorous regions in the crystal packing, and the extended structure displays short fluorine-fluorine contacts. The generation of mixed geometries seems to be a phenomenon of crystallisation, as solution phase NMR studies reveal the presence of only the trans-isomer.

20.
Bioinformatics ; 18(3): 486-7, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11934750

RESUMEN

SUMMARY: OligoArray is a program that computes gene specific and secondary structure free oligonucleotides for genome-scale oligonucleotide microarray construction or other applications. AVAILABILITY: The program code is distributed under the GNU General Public License and is freely available for non-profit use via request from the authors.


Asunto(s)
Diseño de Fármacos , Genoma , Oligonucleótidos/química , Oligonucleótidos/genética , Programas Informáticos , Diseño Asistido por Computadora , Bases de Datos Genéticas , Diseño de Equipo , National Institutes of Health (U.S.) , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA