Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 49(5): 604-622, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29797362

RESUMEN

The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.


Asunto(s)
Enfermedades de los Ganglios Basales/fisiopatología , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Humanos
2.
BMC Neurosci ; 19(1): 42, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012109

RESUMEN

BACKGROUND: Striatal fast-spiking interneurons (FSI) are a subset of GABAergic cells that express calcium-binding protein parvalbumin (PV). They provide feed-forward inhibition to striatal projection neurons (SPNs), receive cortical, thalamic and dopaminergic inputs and are coupled together by electrical and chemical synapses, being important components of the striatal circuitry. It is known that dopamine (DA) depolarizes FSI via D1-class DA receptors, but no studies about the ionic mechanism of this action have been reported. Here we ask about the ion channels that are the effectors of DA actions. This work studies their Ca2+ currents. RESULTS: Whole-cell recordings in acutely dissociated and identified FSI from PV-Cre transgenic mice were used to show that FSI express an array of voltage gated Ca2+ channel classes: CaV1, CaV2.1, CaV2.2, CaV2.3 and CaV3. However, CaV1 Ca2+ channel carries most of the whole-cell Ca2+ current in FSI. Activation of D1-like class of DA receptors by the D1-receptor selective agonist SKF-81297 (SKF) enhances whole-cell Ca2+ currents through CaV1 channels modulation. A previous block of CaV1 channels with nicardipine occludes the action of the DA-agonist, suggesting that no other Ca2+ channel is modulated by D1-receptor activation. Bath application of SKF in brain slices increases the firing rate and activity of FSI as measured with both whole-cell and Ca2+ imaging recordings. These actions are reduced by nicardipine. CONCLUSIONS: The present work discloses one final effector of DA modulation in FSI. We conclude that the facilitatory action of DA in FSI is in part due to CaV1 Ca2+ channels positive modulation.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Calcio/metabolismo , Agonistas de Dopamina/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Interneuronas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Ratones Transgénicos , Parvalbúminas/metabolismo
3.
J Neurophysiol ; 113(3): 796-807, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25392165

RESUMEN

The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.


Asunto(s)
Globo Pálido/fisiología , Potenciales Postsinápticos Inhibidores , Receptor Muscarínico M1/metabolismo , Sinapsis/metabolismo , Animales , Atropina/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Globo Pálido/citología , Péptidos y Proteínas de Señalización Intercelular , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Péptidos/farmacología , Pirenzepina/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
4.
ASN Neuro ; 14: 17590914221102075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36050845

RESUMEN

SUMMARY STATEMENT: A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.


Asunto(s)
Dopamina , Trastornos Parkinsonianos , Adenosina , Animales , Trastornos Parkinsonianos/tratamiento farmacológico , Pramipexol , Receptores de Dopamina D2/fisiología , Roedores
5.
Neuropharmacology ; 89: 232-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25290553

RESUMEN

Models of basal ganglia (BG) function posit a dynamic balance between two classes of striatal projection neurons (SPNs): direct pathway neurons (dSPNs) that facilitate movements, and indirect pathway neurons (iSPNs) that repress movement execution. Two main modulatory transmitters regulate the output of these neurons: dopamine (DA) and acetylcholine (ACh). dSPNs express D1-type DA, M1-and M4-type ACh receptors, while iSPNs express D2-type DA and M1-type ACh receptors. Actions of M1-, D1-, and D2-receptors have been extensively reported, but we still ignore most actions of muscarinic M4-type receptors. Here, we used whole-cell recordings in acutely dissociated neurons, pharmacological tools such as mamba-toxins, and BAC D(1 or 2)-eGFP transgenic mice to show that activation of M4-type receptors with bath applied muscarine enhances Ca(2+)-currents through CaV1-channels in dSPNs and not in iSPNs. This action increases excitability of dSPNs after both direct current injection and synaptically driven stimulation. The increases in Ca(2+)-current and excitability were blocked specifically by mamba toxin-3, suggesting mediation via M4-type receptors. M4-receptor activation also increased network activity of dSPNs but not of iSPNs as seen with calcium-imaging techniques. Moreover, actions of D1-type and M4-type receptors may add to produce a larger enhancement of excitability of dSPNs or, paradoxically, oppose each other depending on the order of their activation. Possible implications of these findings are discussed.


Asunto(s)
Cuerpo Estriado/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Receptor Muscarínico M4/metabolismo , Acetilcolina/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Dopamina/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicardipino/farmacología , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA