Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 144(3): 376-88, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295698

RESUMEN

The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked ß-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat. Replacement of the HCF-1(PRO) repeats by a heterologous proteolytic cleavage signal promotes HCF-1 proteolysis but fails to activate HCF-1(C)-subunit M phase functions. These results reveal an unexpected role of OGT in HCF-1 proteolytic maturation and an unforeseen nexus between OGT-directed O-GlcNAcylation and proteolytic maturation in HCF-1 cell-cycle regulation.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Ciclo Celular , Glicosilación , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Humanos , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/metabolismo , Alineación de Secuencia
2.
Genes Dev ; 37(1-2): 11-12, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061996
3.
Genes Dev ; 30(8): 960-72, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056667

RESUMEN

In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase-protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteolisis , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Simulación por Computador , Evolución Molecular , Humanos , Invertebrados/enzimología , Modelos Moleculares , Mutación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
4.
Nucleic Acids Res ; 47(11): 5792-5808, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31049581

RESUMEN

HCF-2 is a member of the host-cell-factor protein family, which arose in early vertebrate evolution as a result of gene duplication. Whereas its paralog, HCF-1, is known to act as a versatile chromatin-associated protein required for cell proliferation and differentiation, much less is known about HCF-2. Here, we show that HCF-2 is broadly present in human and mouse cells, and possesses activities distinct from HCF-1. Unlike HCF-1, which is excluded from nucleoli, HCF-2 is nucleolar-an activity conferred by one and a half C-terminal Fibronectin type 3 repeats and inhibited by the HCF-1 nuclear localization signal. Elevated HCF-2 synthesis in HEK-293 cells results in phenotypes reminiscent of HCF-1-depleted cells, including inhibition of cell proliferation and mitotic defects. Furthermore, increased HCF-2 levels in HEK-293 cells lead to inhibition of cell proliferation and metabolism gene-expression programs with parallel activation of differentiation and morphogenesis gene-expression programs. Thus, the HCF ancestor appears to have evolved into a small two-member protein family possessing contrasting nuclear versus nucleolar localization, and cell proliferation and differentiation functions.


Asunto(s)
Perfilación de la Expresión Génica , Factor C1 de la Célula Huésped/fisiología , Factores de Transcripción/fisiología , Animales , Línea Celular , Línea Celular Tumoral , Nucléolo Celular , Proliferación Celular , Cromatina/química , Fibroblastos/metabolismo , Duplicación de Gen , Células HEK293 , Células HeLa , Factor C1 de la Célula Huésped/metabolismo , Humanos , Células Jurkat , Células MCF-7 , Ratones , Mitosis , Señales de Localización Nuclear/metabolismo , Fenotipo , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 47(4): 1786-1796, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597109

RESUMEN

Mouse liver regeneration after partial hepatectomy involves cells in the remaining tissue synchronously entering the cell division cycle. We have used this system and H3K4me3, Pol II and Pol III profiling to characterize adaptations in Pol III transcription. Our results broadly define a class of genes close to H3K4me3 and Pol II peaks, whose Pol III occupancy is high and stable, and another class, distant from Pol II peaks, whose Pol III occupancy strongly increases after partial hepatectomy. Pol III regulation in the liver thus entails both highly expressed housekeeping genes and genes whose expression can adapt to increased demand.


Asunto(s)
Regeneración Hepática/genética , Hígado/crecimiento & desarrollo , ARN Polimerasa III/genética , Transcripción Genética , Animales , Ciclo Celular/genética , División Celular/genética , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Hepatectomía , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Hígado/patología , Hígado/cirugía , Ratones , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa III/química
6.
J Biol Chem ; 293(46): 17754-17768, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30224358

RESUMEN

O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase-protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate-the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc-based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.


Asunto(s)
Endopeptidasas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Endopeptidasas/genética , Glicosilación , Factor C1 de la Célula Huésped/genética , Humanos , Simulación de Dinámica Molecular , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Proteolisis , Estereoisomerismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Uridina Difosfato N-Acetilglucosamina/metabolismo
7.
Dev Biol ; 412(1): 1-17, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26921005

RESUMEN

Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.


Asunto(s)
Alelos , Desarrollo Embrionario/genética , Genes Ligados a X , Factor C1 de la Célula Huésped/genética , Animales , Femenino , Ratones , Ratones Transgénicos
8.
Dev Biol ; 418(1): 75-88, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521049

RESUMEN

Mammalian Host-Cell Factor 1 (HCF-1), a transcriptional co-regulator, plays important roles during the cell-division cycle in cell culture, embryogenesis as well as adult tissue. In mice, HCF-1 is encoded by the X-chromosome-linked Hcfc1 gene. Induced Hcfc1(cKO/+) heterozygosity with a conditional knockout (cKO) allele in the epiblast of female embryos leads to a mixture of HCF-1-positive and -deficient cells owing to random X-chromosome inactivation. These embryos survive owing to the replacement of all HCF-1-deficient cells by HCF-1-positive cells during E5.5 to E8.5 of development. In contrast, complete epiblast-specific loss of HCF-1 in male embryos, Hcfc1(epiKO/Y), leads to embryonic lethality. Here, we characterize this lethality. We show that male epiblast-specific loss of Hcfc1 leads to a developmental arrest at E6.5 with a rapid progressive cell-cycle exit and an associated failure of anterior visceral endoderm migration and primitive streak formation. Subsequently, gastrulation does not take place. We note that the pattern of Hcfc1(epiKO/Y) lethality displays many similarities to loss of ß-catenin function. These results reveal essential new roles for HCF-1 in early embryonic cell proliferation and development.


Asunto(s)
Tipificación del Cuerpo/genética , Movimiento Celular/genética , Proliferación Celular/genética , Desarrollo Embrionario/genética , Factor C1 de la Célula Huésped/genética , Animales , Ciclo Celular/genética , Endodermo/citología , Endodermo/metabolismo , Femenino , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X/genética , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , beta Catenina/metabolismo
9.
Genome Res ; 24(7): 1157-68, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24709819

RESUMEN

Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/normas , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Ratones , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados
10.
Genome Res ; 23(6): 907-16, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23539139

RESUMEN

In human transcriptional regulation, DNA-sequence-specific factors can associate with intermediaries that orchestrate interactions with a diverse set of chromatin-modifying enzymes. One such intermediary is HCFC1 (also known as HCF-1). HCFC1, first identified in herpes simplex virus transcription, has a poorly defined role in cellular transcriptional regulation. We show here that, in HeLa cells, HCFC1 is observed bound to 5400 generally active CpG-island promoters. Examination of the DNA sequences underlying the HCFC1-binding sites revealed three sequence motifs associated with the binding of (1) ZNF143 and THAP11 (also known as Ronin), (2) GABP, and (3) YY1 sequence-specific transcription factors. Subsequent analysis revealed colocalization of HCFC1 with these four transcription factors at ∼90% of the 5400 HCFC1-bound promoters. These studies suggest that a relatively small number of transcription factors play a major role in HeLa-cell transcriptional regulation in association with HCFC1.


Asunto(s)
Islas de CpG , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factor de Transcripción YY1/metabolismo , Secuencia de Bases , Sitios de Unión , Regulación de la Expresión Génica , Células HeLa , Humanos , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Unión Proteica , ARN Mensajero/genética , Transducción de Señal , Sitio de Iniciación de la Transcripción , Activación Transcripcional
11.
PLoS Biol ; 10(11): e1001442, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209382

RESUMEN

Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.


Asunto(s)
Ritmo Circadiano , Epigénesis Genética , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética , Animales , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Metilación de ADN , Semivida , Histonas/genética , Histonas/metabolismo , Cinética , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Sitio de Iniciación de la Transcripción , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 109(43): 17430-5, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045687

RESUMEN

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.


Asunto(s)
Regulación de la Expresión Génica , Factor C1 de la Célula Huésped/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Factor C1 de la Célula Huésped/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Señales de Localización Nuclear , Secuencias Repetidas en Tándem
13.
EMBO J ; 28(20): 3185-95, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19763085

RESUMEN

E2F1 is a key positive regulator of human cell proliferation and its activity is altered in essentially all human cancers. Deregulation of E2F1 leads to oncogenic DNA damage and anti-oncogenic apoptosis. The molecular mechanisms by which E2F1 mediates these two processes are poorly understood but are important for understanding cancer progression. During the G1-to-S phase transition, E2F1 associates through a short DHQY sequence with the cell-cycle regulator HCF-1 together with the mixed-lineage leukaemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases. We show here that the DHQY HCF-1-binding sequence permits E2F1 to stimulate both DNA damage and apoptosis, and that HCF-1 and the MLL family of H3K4 methyltransferases have important functions in these processes. Thus, HCF-1 has a broader role in E2F1 function than appreciated earlier. Indeed, sequence changes in the E2F1 HCF-1-binding site can modulate both up and down the ability of E2F1 to induce apoptosis indicating that HCF-1 association with E2F1 is a regulator of E2F1-induced apoptosis.


Asunto(s)
Apoptosis/fisiología , Daño del ADN/fisiología , Factor de Transcripción E2F1/fisiología , Factor C1 de la Célula Huésped/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Secuencia de Aminoácidos , Apoptosis/genética , Sitios de Unión , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Daño del ADN/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/fisiología , Humanos , Immunoblotting , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 285(51): 39623-36, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20937797

RESUMEN

The Myc proto-oncoproteins are transcription factors that recognize numerous target genes through hexameric DNA sequences called E-boxes. The mechanism by which they then activate the expression of these targets is still under debate. Here, we use an RNAi screen in Drosophila S2 cells to identify Drosophila host cell factor (dHCF) as a novel co-factor for Myc that is functionally required for the activation of a Myc-dependent reporter construct. dHCF is also essential for the full activation of endogenous Myc target genes in S2 cells, and for the ability of Myc to promote growth in vivo. Myc and dHCF physically interact, and they colocalize on common target genes. Furthermore, down-regulation of dHCF-associated histone acetyltransferase and histone methyltransferase complexes in vivo interferes with the Myc biological activities. We therefore propose that dHCF recruits such chromatin-modifying complexes and thereby contributes to the expression of Myc targets and hence to the execution of Myc biological activities.


Asunto(s)
Proliferación Celular , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Cromatina/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Factores de Transcripción/inmunología
15.
Mol Cell Biol ; 27(20): 7063-72, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17698583

RESUMEN

Site-specific proteolytic processing plays important roles in the regulation of cellular activities. The histone modification activity of the human trithorax group mixed-lineage leukemia (MLL) protein and the cell cycle regulatory activity of the cell proliferation factor herpes simplex virus host cell factor 1 (HCF-1) are stimulated by cleavage of precursors that generates stable heterodimeric complexes. MLL is processed by a protease called taspase 1, whereas the precise mechanisms of HCF-1 maturation are unclear, although they are known to depend on a series of sequence repeats called HCF-1(PRO) repeats. We demonstrate here that the Drosophila homologs of MLL and HCF-1, called Trithorax and dHCF, are both cleaved by Drosophila taspase 1. Although highly related, the human and Drosophila taspase 1 proteins display cognate species specificity. Thus, human taspase 1 preferentially cleaves MLL and Drosophila taspase 1 preferentially cleaves Trithorax, consistent with coevolution of taspase 1 and MLL/Trithorax proteins. HCF proteins display even greater species-specific divergence in processing: whereas dHCF is cleaved by the Drosophila taspase 1, human and mouse HCF-1 maturation is taspase 1 independent. Instead, human and Xenopus HCF-1PRO repeats are cleaved in vitro by a human proteolytic activity with novel properties. Thus, from insects to humans, HCF proteins have conserved proteolytic maturation but evolved different mechanisms.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Endopeptidasas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endopeptidasas/genética , Estabilidad de Enzimas , Evolución Molecular , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/genética , Inhibidores de Proteasas/metabolismo , Precursores de Proteínas/genética , Interferencia de ARN , Alineación de Secuencia , Especificidad por Sustrato
16.
PLoS One ; 15(1): e0224646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31905202

RESUMEN

Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.


Asunto(s)
Oxidorreductasas/genética , Proteínas Represoras/genética , Deficiencia de Vitamina B 12/genética , Vitamina B 12/genética , Línea Celular , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Factor C1 de la Célula Huésped/genética , Humanos , Redes y Vías Metabólicas/genética , Mutación/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/patología
17.
Trends Biochem Sci ; 28(6): 294-304, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12826401

RESUMEN

When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription. The activities of Oct-1 and HCF-1 - two important regulators of cellular gene expression and proliferation - illuminate strategies by which HSV might coexist with its host.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/fisiología , Proteínas/metabolismo , Simplexvirus/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , División Celular , Regulación de la Expresión Génica , Proteína Vmw65 de Virus del Herpes Simple/química , Factor C1 de la Célula Huésped , Factor 1 de Transcripción de Unión a Octámeros
18.
Dev Neurobiol ; 79(6): 578-595, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31207118

RESUMEN

Formation of the cerebral cortex and commissures involves a complex developmental process defined by multiple molecular mechanisms governing proliferation of neuronal and glial precursors, neuronal and glial migration, and patterning events. Failure in any of these processes can lead to malformations. Here, we study the role of HCF-1 in these processes. HCF-1 is a conserved metazoan transcriptional co-regulator long implicated in cell proliferation and more recently in human metabolic disorders and mental retardation. Loss of HCF-1 in a subset of ventral telencephalic Nkx2.1-positive progenitors leads to reduced numbers of GABAergic interneurons and glia, owing not to decreased proliferation but rather to increased apoptosis before cell migration. The loss of these cells leads to development of severe commissural and cortical defects in early postnatal mouse brains. These defects include mild and severe structural defects of the corpus callosum and anterior commissure, respectively, and increased folding of the cortex resembling polymicrogyria. Hence, in addition to its well-established role in cell proliferation, HCF-1 is important for organ development, here the brain.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Calloso/metabolismo , Factor C1 de la Célula Huésped/deficiencia , Neuroglía/metabolismo , Neuronas/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Corteza Cerebral/embriología , Corteza Cerebral/patología , Cuerpo Calloso/embriología , Cuerpo Calloso/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/patología , Neuronas/patología , Embarazo
19.
Mol Cell Biol ; 39(5)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30559308

RESUMEN

Host-cell factor 1 (HCF-1), encoded by the ubiquitously expressed X-linked gene Hcfc1, is an epigenetic coregulator important for mouse development and cell proliferation, including during liver regeneration. We used a hepatocyte-specific inducible Hcfc1 knock-out allele (called Hcfc1hepKO), to induce HCF-1 loss in hepatocytes of hemizygous Hcfc1hepKO/Y males by four days. In heterozygous Hcfc1hepKO/+ females, owing to random X-chromosome inactivation, upon Hcfc1hepKO allele induction, a 50/50 mix of HCF-1 positive and negative hepatocyte clusters is engineered. The livers with Hcfc1hepKO/Y hepatocytes displayed a 21-24-day terminal non-alcoholic fatty liver (NAFL) followed by non-alcoholic steatohepatitis (NASH) disease progression typical of severe NAFL disease (NAFLD). In contrast, in livers with heterozygous Hcfc1hepKO/+ hepatocytes, HCF-1-positive hepatocytes replaced HCF-1-negative hepatocytes and revealed only mild-NAFL development. Loss of HCF-1 led to loss of PGC1α protein, probably owing to its destabilization, and deregulation of gene expression particularly of genes involved in mitochondrial structure and function, likely explaining the severe Hcfc1 hepKO/Y liver pathology. Thus, HCF-1 is essential for hepatocyte function, likely playing both transcriptional and non-transcriptional roles. These genetically-engineered loss-of-HCF-1 mice can be used to study NASH as well as NAFLD resolution.


Asunto(s)
Factor C1 de la Célula Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Alelos , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Genes Ligados a X , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética
20.
Epigenetics Chromatin ; 11(1): 52, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208973

RESUMEN

BACKGROUND: Compensatory liver hyperplasia-or regeneration-induced by two-thirds partial hepatectomy (PH) permits the study of synchronized activation of mammalian gene expression, particularly in relation to cell proliferation. Here, we measured genomic transcriptional responses and mRNA accumulation changes after PH and sham surgeries. RESULTS: During the first 10-20 h, the PH- and sham-surgery responses were very similar, including parallel early activation of cell-division-cycle genes. After 20 h, however, whereas post-PH livers continued with a robust and coordinate cell-division-cycle gene-expression response before returning to the resting state by 1 week, sham-surgery livers returned directly to a resting gene-expression state. Localization of RNA polymerase II (Pol II), and trimethylated histone H3 lysine 4 (H3K4me3) and 36 (H3K36me3) on genes dormant in the resting liver and activated during the PH response revealed a general de novo promoter Pol II recruitment and H3K4me3 increase during the early 10-20 h phase followed by Pol II elongation and H3K36me3 accumulation in gene bodies during the later proliferation phase. H3K36me3, generally appearing at the first internal exon, was preceded 5' by H3K36me2; 3' of the first internal exon, in about half of genes H3K36me3 predominated and in the other half H3K36me2 and H3K36me3 co-existed. Further, we observed some unusual gene profiles with abundant Pol II but little evident H3K4me3 or H3K36me3 modification, indicating that these modifications are neither universal nor essential partners to Pol II transcription. CONCLUSIONS: PH and sham surgical procedures on mice reveal striking early post-operatory gene expression similarities followed by synchronized mRNA accumulation and epigenetic histone mark changes specific to PH.


Asunto(s)
Código de Histonas , Regeneración Hepática , Transcriptoma , Animales , ADN Polimerasa II/metabolismo , Epigénesis Genética , Hígado/metabolismo , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA