Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34807735

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Diarrea , Enterocitos , Escherichia coli Enterotoxigénica/metabolismo , Enterotoxinas/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestino Delgado , Mucina 2/genética , Mucina 2/metabolismo , Mucinas/metabolismo
2.
Amino Acids ; 54(2): 193-204, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741684

RESUMEN

Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental  mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.


Asunto(s)
Proteínas Angiogénicas , Placenta , Proteínas Angiogénicas/metabolismo , Animales , Arginina/metabolismo , Arginina/farmacología , Suplementos Dietéticos , Células Endoteliales/metabolismo , Femenino , Placenta/metabolismo , Factor de Crecimiento Placentario/metabolismo , Poliaminas/metabolismo , Embarazo , Sus scrofa/metabolismo , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Adv Exp Med Biol ; 1285: 233-253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33770410

RESUMEN

Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.


Asunto(s)
Aminoácidos , Animales de Zoológico , Animales , Cistina , Humanos , Isoleucina , Leucina , Metionina , Reproducción , Treonina , Tirosina
4.
Mol Reprod Dev ; 84(9): 870-882, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28390193

RESUMEN

The mammalian placenta is essential for supplying nutrients (e.g., amino acids and water) and oxygen from the mother to fetus and for removing fetal metabolites (e.g., ammonia and CO2 ) from fetus to mother. Thus, placental growth and development are determinants of fetal survival, growth, and development. Indeed, low birth weight is closely associated with reduced placental growth. Providing gestating gilts or sows with dietary supplementation of arginine and glutamine, increases placental growth (including vascular growth), improves embryonic/fetal growth and survival, and reduces the large variation in birth weight among litters. These two amino acids serve as building blocks for tissue protein as well as substrates for the production of polyamines and nitric oxide, which stimulate DNA and protein synthesis and angiogenesis and vascular growth in the placenta. These recent findings not only greatly advance the field of mammalian amino acid metabolism and nutrition, but also provide practical, mechanism-based methods to enhance reproductive efficiency in swine. These results may also help improve embryonic/fetal survival and growth in other livestock species (e.g., sheep and cattle) and in humans.


Asunto(s)
Aminoácidos/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Placenta/metabolismo , Animales , Femenino , Embarazo , Porcinos
5.
J Anim Sci Biotechnol ; 13(1): 134, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476252

RESUMEN

BACKGROUND: Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS: Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS: Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION: Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.

6.
Exp Biol Med (Maywood) ; 243(6): 525-533, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29466875

RESUMEN

Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H2S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.


Asunto(s)
Proteínas en la Dieta/metabolismo , Desarrollo Fetal , Sobrevida , Animales , Suplementos Dietéticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA