Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 763
Filtrar
Más filtros

Intervalo de año de publicación
1.
Opt Express ; 31(21): 34903-34916, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859235

RESUMEN

We report a titanium indiffused waveguide resonator featuring an integrated electro-optic modulator for cavity length stabilisation that produces close to 5 dB of squeezed light at 1550 nm (2.4 dB directly measured). The resonator is locked on resonance for tens of minutes with 70 mW of SH light incident on the cavity, demonstrating that photorefraction can be mitigated. Squeezed light production concurrent with cavity length stabilisation utilising the integrated EOM is demonstrated. The device demonstrates the suitability of this platform for squeezed light generation in network applications, where stabilisation to the reference field is typically necessary.

2.
Opt Express ; 29(2): 1991-2002, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726401

RESUMEN

We report second harmonic generation from a titanium indiffused lithium niobate waveguide resonator device whose cavity length is locked to the fundamental pump laser using an on-chip phase modulator. The device remains locked for more than 5 minutes, producing more than 80% of the initial second harmonic power. The stability of the system is seen to be limited by DC-drift, a known effect in many lithium niobate systems that include deposited electrodes. The presented device explores the suitability of waveguide resonators in this platform for use in larger integrated networks.

3.
Anal Chem ; 92(12): 8142-8150, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32401497

RESUMEN

Chemical ionization Orbitrap mass spectrometry (CI-Orbitrap) represents a promising new technique for gas-phase analysis in analytical and atmospheric chemistry mainly due to its very high mass resolving power. In this work, we performed the first side-by-side comparison between a CI-Orbitrap and the widely used atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF) using two different chemical ionization methods, i.e., acetate-ion-based (CH3COO-) and aminium-ion-based (n-C3H7NH3+) schemes. The capability of the CI-Orbitrap at accurately measuring low concentrations of gaseous species formed from the oxidation of α-pinene was explored. Although this study reveals a lack of linearity of the CI-Orbitrap when measuring product ions at very low concentrations (<1 × 106 molecules cm-3), very good agreement between both techniques can be achieved by applying a newly developed linearity correction. It is experimentally shown that the correction function is independent of the reagent ion used. Thus, accurate quantification of organic compounds at concentrations as low as 1 × 105 molecules cm-3 by the CI-Orbitrap can be achieved. Finally, by means of tandem mass spectrometry, the unique capability of the Orbitrap allows the direct determination of the binding energy of cluster ions between analyte and reagent ions, that is needed for the assessment of a chosen ionization scheme.

4.
Phys Rev Lett ; 125(10): 104301, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955320

RESUMEN

In a bearing state, touching spheres (disks in two dimensions) roll on each other without slip. Here we frustrate a system of touching spheres by imposing two different bearing states on opposite sides and search for the configurations of lowest energy dissipation. If the dissipation between contacts of spheres is viscous (with random damping constants), the angular momentum continuously changes from one bearing state to the other. For Coulomb friction (with random friction coefficients) in two dimensions, a sharp line separates the two bearing states and we show that this line corresponds to the minimum cut. Astonishingly, however, in three dimensions intermediate bearing domains that are not synchronized with either side are energetically more favorable than the minimum-cut surface. Instead of a sharp cut, the steady state displays a fragmented structure. This novel type of state of minimum dissipation is characterized by a spanning network of slipless contacts that reaches every sphere. Such a situation becomes possible because in three dimensions bearing states have four degrees of freedom.

5.
Support Care Cancer ; 28(5): 2431, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32056011

RESUMEN

The Acknowledgement Statement was incorrect in the original publication of this article [1] and the previous correction note [2]. The correct statement is as follows.

6.
Support Care Cancer ; 27(4): 1579, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30693392

RESUMEN

The "Acknowledgment Statement" of the published paper is incorrect. The correct statement should be the below: Acknowledgements We thank Sarah Vogel for her support in taste test realization and Yvonne Sauermann for preparation of the tastant solutions. The present work was carried out by Ms. Schalk in order to meet the requirements for the awarding of the title of Dr. med. at the FAU.

7.
Radiologe ; 59(Suppl 1): 21-27, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31346650

RESUMEN

Image guidance has been playing a decisive role throughout the history of radiotherapy, but developments in 3D-and 4D imaging data acquisition using computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have significantly boosted the precision of conformal radiotherapy. An overarching aim of radiotherapy is conforming the treatment dose to the tumor in order to optimally limit a high radiation dose outside the target. Stereotactic, intensity modulated, and adaptive radiotherapy are all largely based on appropriately using imaging information both before and during treatment delivery using on-board imaging devices. While pretreatment imaging for planning has reached a very high level in the past two decades, the next step will be to further refine and accelerate imaging during treatment delivery, resulting in adaptation of the dose fluence during a patient's treatment in various scenarios, some of which are discussed in this article.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Radioterapia Conformacional , Tomografía Computarizada por Rayos X , Humanos , Tomografía de Emisión de Positrones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Conformacional/tendencias
8.
Phys Rev Lett ; 121(4): 042501, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095940

RESUMEN

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.}) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E_{c.m.}, with the ^{5}He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E_{c.m.} range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ^{3}He(^{3}He,2p)α reaction.

9.
Phys Chem Chem Phys ; 20(16): 10939-10948, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29623312

RESUMEN

Oxygenated organic compounds are omnipresent in the troposphere, due to their strong emissions from either biogenic or anthropogenic sources. Additionally, the degradation and oxidation processes of volatile organic compounds (VOCs) result in the production of oxygenated organic compounds in the troposphere. The degradation and conversion of these compounds are often initiated by radical reactions and occur in the gas phase as well as in the aqueous phase, including cloud droplets, fog, haze, rain or hygroscopic particles containing 'aerosol liquid water (ALW)'. In the present study, the temperature-dependent OH radical reactions with oxygenated organic compounds in the aqueous phase have been investigated by laser flash photolysis. To determine the rate constants, the OH radical - thiocyanate anion competition kinetics method has been used. Once the organic reactant has an absorption at the excitation wavelength of the photolysis laser, the initial OH concentration decreases. This internal absorption effect leads to an overestimated rate constant of the investigated compound. The present study considers this contribution in order to clarify the internal absorption effect of the investigated organic compounds. The following rate constants for OH radical oxidation reactions of the oxygenated organic compounds have been obtained: acetone (2-propanone) k298K = (7.6 ± 1.0) × 107 L mol-1 s-1, 1-hydroxypropan-2-one k298K = (1.1 ± 0.1) × 109 L mol-1 s-1, 1,3-dihydroxypropan-2-one k298K = (1.5 ± 0.1) × 109 L mol-1 s-1, 2,3-dihydroxypropanal k298K = (1.3 ± 0.1) × 109 L mol-1 s-1, butane-1,3-diol k298K = (2.5 ± 0.1) × 109 L mol-1 s-1, butane-2,3-diol k298K = (2.0 ± 0.1) × 109 L mol-1 s-1 and hexane-1,2-diol k298K = (4.6 ± 0.4) × 109 L mol-1 s-1. With the rate constants obtained and their T-dependencies, the source and sink processes of oxygenated organic compounds in the tropospheric aqueous phase are arrived at precisely. These findings might enhance the predictive capabilities of models such as the chemical aqueous-phase radical mechanism (CAPRAM).

10.
Support Care Cancer ; 26(3): 843-851, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28948404

RESUMEN

PURPOSE: Cancer patients are at high risk of malnutrition and tumor cachexia further increasing morbidity and mortality. Reasons for cachexia are not clear yet, but inflammatory processes as well as the occurrence of taste disorders reducing nutrient uptake are discussed to play key roles. The purpose of this study was to gain insight into causative factors of taste disturbance in cancer patients. Does the cancer itself, inflammatory processes or cancer therapy influence taste disorders? METHODS: To capture an underlying taste disorder patients with cancer (n = 42), acutely hospitalized inflammatory disease patients (n = 57) and healthy controls (n = 39) were examined. To assess the influence of chemotherapy, patients with and without chemotherapy were compared. Taste tests were performed according to DIN ISO 3972:2011. Inflammation was recorded using laboratory parameters. Statistical evaluation was conducted using the Software R. RESULTS: Cancer patients showed significantly increased taste thresholds for sweet, salty, and umami compared to healthy controls. There were no significant differences in taste detection and recognition between patients with former, current, or without chemotherapeutical treatment. Patients with an acute inflammatory disease showed an increased taste threshold for umami compared to healthy controls. CONCLUSIONS: It could be shown that cancer patients suffer from taste disorders irrespective of an existing chemotherapeutical treatment. Cancer-related inflammation appears to have a greater impact on taste perception than an acute inflammatory process. Therefore, an adapted dietary adjustment should be carried out at an early stage for cancer patients in order to avoid nutritional disorders caused by a taste disorder.


Asunto(s)
Neoplasias/complicaciones , Trastornos del Gusto/etiología , Percepción del Gusto/fisiología , Enfermedad Aguda , Anciano , Femenino , Humanos , Inflamación , Masculino , Proyectos Piloto
11.
Phys Rev Lett ; 119(12): 124501, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29341666

RESUMEN

Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.

12.
Phys Rev Lett ; 118(8): 088301, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28282207

RESUMEN

We study the critical behavior of a general contagion model where nodes are either active (e.g., with opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two states are determined by (i) spontaneous transitions independent of the neighborhood, (ii) transitions induced by neighboring nodes, and (iii) spontaneous reverse transitions. The resulting dynamics is extremely rich including limit cycles and random phase switching. We derive a unifying mean-field theory. Specifically, we analytically show that the critical behavior of systems whose dynamics is governed by processes (i)-(iii) can only exhibit three distinct regimes: (a) uncorrelated spontaneous transition dynamics, (b) contact process dynamics, and (c) cusp catastrophes. This ends a long-standing debate on the universality classes of complex contagion dynamics in mean field and substantially deepens its mathematical understanding.

13.
Chaos ; 27(4): 047402, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28456161

RESUMEN

The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent ß of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value ß = 1 for a percentage of about 30%. More specifically, ß is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.

15.
Phys Rev Lett ; 116(25): 254301, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391726

RESUMEN

We study fixed assemblies of touching spheres that can individually rotate. From any initial state, sliding friction drives an assembly toward a slip-free rotation state. For bipartite assemblies, which have only even loops, this state has at least four degrees of freedom. For exactly four degrees of freedom, we analytically predict the final state, which we prove to be independent of the strength of sliding friction, from an arbitrary initial one. With a tabletop experiment, we show how to impose any slip-free rotation state by only controlling two spheres, regardless of the total number.

16.
Phys Rev Lett ; 116(2): 025701, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26824550

RESUMEN

Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2<τ(g)≤2.5. This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

17.
Phys Rev Lett ; 116(5): 055701, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894717

RESUMEN

A solid wooden cube fragments into pieces as we sequentially drill holes through it randomly. This seemingly straightforward observation encompasses deep and nontrivial geometrical and probabilistic behavior that is discussed here. Combining numerical simulations and rigorous results, we find off-critical scale-free behavior and a continuous transition at a critical density of holes that significantly differs from classical percolation.

18.
Phys Rev Lett ; 117(24): 245001, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-28009190

RESUMEN

The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

19.
Phys Rev Lett ; 117(3): 035002, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472118

RESUMEN

Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

20.
Faraday Discuss ; 189: 291-315, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27112235

RESUMEN

A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions from biomass combustion derived up to 60% from local emissions. Coal combustion as a significant source was only present during eastern air mass inflow and showed very similar concentrations at all sites, indicating the importance of trans-boundary air pollution transport in the study area. Overall, nearly half of the PM10 mass was attributed to urban sources by a simple subtractive approach with highest reduction potentials of up to 80% for local (urban) mitigation measures in ultrafine and coarse particles. Local increments of elemental carbon have decreased by about 50% as compared to the year 2000, corroborating results from a former study on the positive effects of a low emission zone, implemented in Leipzig in 2011.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA