Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(28): e202204953, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35416399

RESUMEN

Artificial photosynthesis for hydrogen production is an important element in the search for green energy sources. The incorporation of photoactive units into mechanically stable 2D materials paves the way toward the realization of ultrathin membranes as mimics for leaves. Here we present and compare two concepts to introduce a photoactive RuII polypyridine complex into ≈1 nm thick carbon nanomembranes (CNMs) generated by low-energy electron irradiation induced cross-linking of aromatic self-assembled monolayers. The photoactive units are either directly incorporated into the CNM scaffold or covalently grafted to its surface. We characterize RuII CNMs using X-ray photoelectron, surface-enhanced Raman, photothermal deflection spectroscopy, atomic force, scanning electron microscopy, and study their photoactivity in graphene field-effect devices. Therewith, we explore the applicability of low-energy electron irradiation of metal complexes for photosensitizer nanosheet formation.

2.
Analyst ; 146(16): 5033-5036, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34291247

RESUMEN

We demonstrate the potential of photothermal deflection spectroscopy (PDS) to study the self-assembly of dye monolayers in situ. Beyond the determination of adsorption kinetics at specific wavelengths, PDS gains its strength from yielding UV-vis absorptance spectra of SAMs in situ, unaffected by scattering, from which supramolecular interactions can be deduced.

3.
Chemistry ; 25(36): 8630-8634, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31021432

RESUMEN

Longevity of complex organic devices critically depends on the supramolecular integrity of the constituting layers and interfaces. Because the latter are soft matter, they can structurally respond to perturbation of their supramolecular structure by relaxing back to a thermodynamically favorable state. To use this response for self-healing of optoelectronically active layers and particularly interfaces, the degraded dyes in these layers need to be exchanged with non-degraded ones. Here, we present a dye layer interfaced between a solid surface and a dye reservoir that autonomously self-heals after photo-degradation of single molecules to restore its optical function. Surface sensitive in situ photothermal deflection spectroscopy reveals that this supramolecular self-healing approach critically depends on the thermodynamic stability of the layer, the chemical change of the dye upon degradation, and the medium dissolving the degraded dye and providing the reservoir dyes. Hence, the interplay of these parameters is key to successfully using this supramolecular self-healing approach to thin layers and interfaces in organic device for increased sustainability of organic optoelectronics and related fields.

4.
Chemphyschem ; 20(24): 3336-3345, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31800979

RESUMEN

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3- species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance.

5.
J Phys Chem A ; 122(51): 9821-9832, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30500206

RESUMEN

In this work we elucidate the fundamental difference between aggregate formation of donor-π-acceptor merocyanines in their electronic ground and excited states. While increasing the π-bridge size favors formation of π-stacked aggregates in the dark, irradiation with visible light causes reorientation of the dyes to form prototype H-aggregates with compensating dipole moments. This photoannealing changes the supramolecular structure and its UV-vis spectroscopic properties dramatically, thus being of importance for the function of active layers composed of these dyes. Aggregates of the ground state dyes are bound cooperatively through ππ-London dispersion interactions and hydrogen bonds between the polar α-cyano-carboxylic acid groups. However, charge transfer upon photoexcitation leads to repulsion of the polar acid groups. Electronic excitation of the dyes approximately doubles the ground state dipole moment, thus driving molecular reorientation into prototype H-aggregate structures. We show that this photoinduced supramolecular rearrangement can disrupt the large polymeric aggregates formed in the dark. The photoinduced supramolecular structural changes reported in this work will influence the performance of optoelectronic devices composed of these structures and must be controlled to avoid morphological decomposition of active layers upon operation.

6.
J Phys Chem A ; 121(45): 8614-8624, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29068684

RESUMEN

Corroles are emerging as an important class of macrocycles with numerous applications because of their peculiar photophysical and metal chelating properties. meso-Pyrimidinylcorroles are easily deprotonated in certain solvents, which changes their absorption and emission spectra as well as their accessible supramolecular structures. To enable control over the formation of supramolecular structures, the dominant corrole species, i.e., the deprotonated form or one of the two NH-tautomers, needs to be identified. Therefore, we focus in the present article on the determination of the UV-vis spectroscopic properties of the free-base NH-tautomers and the deprotonated form of a new amphiphilic meso-pyrimidinylcorrole that can assemble to supramolecular structures at heterointerfaces as utilized in the Langmuir-Blodgett and liquid-liquid interface precipitation techniques. After quantification of the polarities of the free-base NH-tautomers and the deprotonated form by means of quantum chemically derived electrostatic potential distributions at the corroles' van der Waals surfaces, the preferential stabilization of (some of) the considered species in solvents of different polarity is identified by means of absorption spectroscopy. For the solutions with complex mixtures of species, we applied fluorescence excitation spectroscopy to estimate the relative weights of the individual corrole species. This technique might also be applied to identify dominating species in molecularly thin films directly on the subphase' surface of Langmuir-Blodgett troughs. Supported by quantum chemical calculations we were able to differentiate between the spectral signatures of the individual NH-tautomers by means of fluorescence excitation spectroscopy.

7.
Nanoscale ; 13(48): 20583-20591, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34874038

RESUMEN

In recent years, functional molecular nanosheets have attracted much attention in the fields of sensors and energy storage. Here, we present an approach for the synthesis of photoactive metal-organic nanosheets with ultimate molecular thickness. To this end, we apply low-energy electron irradiation induced cross-linking of 4'-(2,2':6',2''-terpyridine-4'-yl)-1,1'-biphenyl-4-thiol self-assembled monolayers on gold to convert them into functional ∼1 nm thick carbon nanomembranes possessing the ability to reversibly complex lanthanide ions (Ln-CNMs). The obtained Ln-CNMs can be prepared on a large-scale (>10 cm2) and inherit the photoactivity of the pristine terpyridine lanthanide complex (Ln(III)-tpy). Moreover, they possess mechanical stability as free-standing sheets over micrometer sized openings. The presented methodology paves a simple and robust way for the preparation of ultrathin nanosheets with tailored photoactive properties for application in photocatalytic and energy conversion devices.

8.
ACS Appl Mater Interfaces ; 9(50): 44181-44191, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29185335

RESUMEN

The supramolecular structure essentially determines the properties of organic thin films. Therefore, it is of utmost importance to understand the influence of molecular structure modifications on supramolecular structure formation. In this article, we demonstrate how to tune molecular orientations of amphiphilic 4-hydroxy thiazole derivatives by means of the Langmuir-Blodgett (LB) technique and how this depends on the length of an alkylic spacer between the thiazole chromophore and the polar anchor group. Therefore, we characterize their corresponding supramolecular structures, thermodynamic, absorption, and fluorescence properties. Particularly, the polarization-dependence of the fluorescence is analyzed to deduce molecular orientations and their possible changes after annealing, i.e., to characterize the thermodynamic stability of the individual solid state phases. Because the investigated thiazoles are amphiphilic, the different solid state phases can be formed and be controlled by means of the Langmuir-Blodgett (LB) technique. This technique also allows to deduce atomistic supramolecular structure motives of the individual solid phases and to characterize their thermodynamic stabilities. Utilizing the LB technique, we demonstrate that subtle molecular changes, like the variation in spacer length, can yield entirely different solid state phases with distinct supramolecular structures and properties.

9.
ACS Appl Mater Interfaces ; 8(33): 21512-21, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27482718

RESUMEN

Morphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g., organic solar cells (OSCs), organic light emitting diodes (OLEDs), and organic field-effect transistors (OFETs). We demonstrate how the photonic properties of fullerenes change with the formation of van der Waals aggregates. We identified supramolecular structures with broadly tunable absorption in the visible spectral range and demonstrated how to form aggregates with targeted visible (vis) absorption. To control supramolecular structure formation, we functionalized the C60-backbone with polar (bis-polyethylene glycol malonate-MPEG) tails, thus yielding an amphiphilic fullerene derivative that self-assembles at interfaces. Aggregates of systematically tuned size were obtained from concentrating MPEGC60 in stearic acid matrices, while different supramolecular geometries were provoked via different thin film preparation methods, namely spin-casting and Langmuir-Blodgett (LB) deposition from an air-water interface. We demonstrated that differences in molecular orientation in LB films (C2v type point group aggregates) and spin-casting (stochastic aggregates) lead to huge changes in electronic absorption spectra due to symmetry and orientation reasons. These differences in the supramolecular structures, causing the different photonic properties of spin-cast and LB films, could be identified by means of quantum chemical calculations. Employing supramolecular assembly, we propounded that molecular symmetry in fullerene aggregates is extremely important in controlling vis absorption to harvest photons efficiently, when mixed with a donor molecule, thus improving active layer design and performance of OSCs.

10.
Chempluschem ; 81(7): 585, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31968717

RESUMEN

Invited for this month's cover are the collaborating groups of Dr. Martin Presselt from Friedrich Schiller University Jena, Germany and Prof. Zeev Gross from Technion-Israel Institute of Technology, Haifa, Israel. The cover picture shows a human jogging, which can potentially triggering asthma or heart attacks. These attacks involve blood-vessel contraction and are therefore typically indicated by an increase in NO concentration in the exhaled air. Read the full text of the article at 10.1002/cplu.201500553.

11.
Chempluschem ; 81(7): 594-603, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31968718

RESUMEN

The potential of an iron(III) corrole complex for use in the detection of nitric oxide (NO) was investigated. The reversible conversion of an dissolved iron(III) corrole to its corresponding nitrosyl complex using gaseous nitric oxide was monitored by UV/Vis spectroscopy. The spectral differences between both coordination compounds were used to determine photometrically small amounts of nitric oxide in the sub-parts-per-million range. The spectral changes due to NO binding were assigned to charge-transfer transitions arising upon NO coordination and were analyzed in detail with support from quantum chemical calculations. Finally, films of the iron(III) corrole were deposited on quartz glass. Thus, the great potential of iron(III) corroles for the development of advanced, highly sensitive and low-energy-consuming photonic sensing devices was demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA