Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 13(2): e1006561, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166228

RESUMEN

DnaA is a conserved key regulator of replication initiation in bacteria, and is homologous to ORC proteins in archaea and in eukaryotic cells. The ATPase binds to several high affinity binding sites at the origin region and upon an unknown molecular trigger, spreads to several adjacent sites, inducing the formation of a helical super structure leading to initiation of replication. Using FRAP analysis of a functional YFP-DnaA allele in Bacillus subtilis, we show that DnaA is bound to oriC with a half-time of 2.5 seconds. DnaA shows similarly high turnover at the replication machinery, where DnaA is bound to DNA polymerase via YabA. The absence of YabA increases the half time binding of DnaA at oriC, showing that YabA plays a dual role in the regulation of DnaA, as a tether at the replication forks, and as a chaser at origin regions. Likewise, a deletion of soj (encoding a ParA protein) leads to an increase in residence time and to overinitiation, while a mutation in DnaA that leads to lowered initiation frequency, due to a reduced ATPase activity, shows a decreased residence time on binding sites. Finally, our single molecule tracking experiments show that DnaA rapidly moves between chromosomal binding sites, and does not arrest for more than few hundreds of milliseconds. In Escherichia coli, DnaA also shows low residence times in the range of 200 ms and oscillates between spatially opposite chromosome regions in a time frame of one to two seconds, independently of ongoing transcription. Thus, DnaA shows extremely rapid binding turnover on the chromosome including oriC regions in two bacterial species, which is influenced by Soj and YabA proteins in B. subtilis, and is crucial for balanced initiation control, likely preventing fatal premature multimerization and strand opening of DnaA at oriC.


Asunto(s)
Proteínas Bacterianas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Complejo de Reconocimiento del Origen/genética , Adenosina Trifosfatasas/genética , Bacillus subtilis/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Origen de Réplica/genética
2.
PLoS Genet ; 12(6): e1006116, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27362352

RESUMEN

Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.


Asunto(s)
Membrana Celular/metabolismo , Detergentes/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Bacillus subtilis/metabolismo , Microscopía Fluorescente/métodos , Transporte de Proteínas/fisiología
3.
Mol Microbiol ; 78(2): 305-19, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20735780

RESUMEN

Nitrogen-regulated genes in enterobacteria are positively controlled by the transcriptional activator of σ(N) -dependent promoters NtrC, either directly or indirectly, through the dual regulator Nac. Similar to enterobacteria, gdhA encoding glutamate dehydrogenase from Pseudomonas putida is one of the few genes that is induced by excess nitrogen. In P. putida, the binding of NtrC to the gdhA promoter region and in vitro transcription suggest that, unlike its enterobacterial homologue that is repressed by Nac, gdhA is directly repressed by NtrC. Footprinting analyses demonstrated that NtrC binds to four distinct sites in the gdhA promoter. NtrC dimers bind cooperatively, and those bound closer to the promoter interact with the dimers bound further upstream, thus producing a proposed repressor loop in the DNA. The formation of the higher-order complex and the repressor loop appears to be important for repression but not absolutely essential. Both the phosphorylated and the non-phosphorylated forms of NtrC efficiently repressed gdhA transcription in vitro and in vivo. Therefore, NtrC repression of gdhA under nitrogen-limiting conditions does not depend on the phosphorylation of the regulator; rather, it relies on an increase in the repressor concentration under these conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutamato Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Pseudomonas putida/genética , Proteínas Bacterianas/genética , Sitios de Unión , Huella de ADN , Regulación Bacteriana de la Expresión Génica , Glutamato Deshidrogenasa/genética , Fosforilación , Regiones Promotoras Genéticas , Pseudomonas putida/enzimología , ARN Bacteriano/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
4.
J Bacteriol ; 191(19): 6123-35, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19648236

RESUMEN

Pseudomonas putida KT2440 is a model strain for studying bacterial biodegradation processes. However, very little is known about nitrogen regulation in this strain. Here, we show that the nitrogen regulatory NtrC proteins from P. putida and Escherichia coli are functionally equivalent and that substitutions leading to partially active forms of enterobacterial NtrC provoke the same phenotypes in P. putida NtrC. P. putida has only a single P(II)-like protein, encoded by glnK, whose expression is nitrogen regulated. Two contiguous NtrC binding sites located upstream of the sigma(N)-dependent glnK promoter have been identified by footprinting analysis. In vitro experiments with purified proteins demonstrated that glnK transcription was directly activated by NtrC and that open complex formation at this promoter required integration host factor. Transcription of genes orthologous to enterobacterial codB, dppA, and ureD genes, whose transcription is dependent on sigma(70) and which are activated by Nac in E. coli, has also been analyzed for P. putida. Whereas dppA does not appear to be regulated by nitrogen via NtrC, the codB and ureD genes have sigma(N)-dependent promoters and their nitrogen regulation was exerted directly by NtrC, thus avoiding the need for Nac, which is missing in this bacterial species. Based upon these results, we propose a simplified nitrogen regulatory network in P. putida (compared to that in enterobacteria), which involves an indirect-feedback autoregulation of glnK using NtrC as an intermediary.


Asunto(s)
Proteínas Bacterianas/fisiología , Nitrógeno/metabolismo , Pseudomonas putida/metabolismo , Alelos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Huella de ADN , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Transporte de Membrana/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/fisiología , Proteínas de Unión Periplasmáticas/genética , Regiones Promotoras Genéticas/genética , Pseudomonas putida/genética , Factores de Transcripción/genética
5.
J Bacteriol ; 190(1): 416-20, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17965157

RESUMEN

This work describes a regulatory network of Pseudomonas putida controlled in response to nitrogen availability. We define NtrC as the master nitrogen regulator and suggest that it not only activates pathways for the assimilation of alternative nitrogen sources but also represses carbon catabolism under nitrogen-limited conditions, possibly to prevent excessive carbon and energy flow in the cell.


Asunto(s)
Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico/genética , Regulación Bacteriana de la Expresión Génica , Cinética , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas Ribosómicas/genética , Transcripción Genética
6.
FEMS Microbiol Lett ; 300(2): 222-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19765081

RESUMEN

The Pseudomonas sp. strain ADP atzDEF operon encodes the enzymes involved in cyanuric acid mineralization, the final stage of the s-triazine herbicide atrazine degradative pathway. We have previously shown that atzDEF is under nitrogen control in both its natural host and Pseudomonas putida KT2442. Expression of atzDEF requires the divergently encoded LysR-type transcriptional regulator AtzR. Here, we take advantage of the poor induction of atzDEF in Escherichia coli to identify Pseudomonas factors involved in nitrogen control of atzDEF expression. Simultaneous production of P. putida NtrC and GlnK, along with AtzR, restored the normal atzDEF regulatory pattern. Gene expression analysis in E. coli and P. putida indicated that NtrC activates atzR expression, while the role of GlnK is to promote AtzR activation of atzDEF under nitrogen limitation. Activation of atzDEF in a mutant background deficient in GlnK uridylylation suggests that post-translational modification is not strictly required for transduction of the nitrogen limitation signal to AtzR. The present data and our previous results are integrated in a regulatory circuit that describes all the known responses of the atzDEF operon.


Asunto(s)
Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Operón , Pseudomonas/fisiología , Triazinas/metabolismo , Fusión Artificial Génica , Escherichia coli/genética , Perfilación de la Expresión Génica , Genes Reporteros , Modelos Biológicos , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
7.
Environ Microbiol ; 8(1): 165-77, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16343331

RESUMEN

Bacterial transcriptional networks are built on a hierarchy of regulators, on top of which lie the components of the RNA polymerase (in particular the sigma factors) and the global control elements, which play a pivotal role. We have designed a genome-wide oligonucleotide-based DNA microarray for Pseudomonas putida KT2440. In combination with real-time reverse transcription polymerase chain reaction (RT-PCR), we have used it to analyse the expression pattern of the genes encoding the RNA polymerase subunits (the core enzyme and the 24 sigma factors), and various proteins involved in global regulation (Crc, Lrp, Fur, Anr, Fis, CsrA, IHF, HupA, HupB, HupN, BipA and several MvaT-like proteins), during the shift from exponential growth in rich medium into starvation and stress brought about by the entry into stationary phase. Expression of the genes encoding the RNA polymerase core and the vegetative sigma factor decreased in stationary phase, while that of sigma(S) increased. Data obtained for sigma(N), sigma(H), FliA and for the 19 extracytoplasmic function (ECF)-like sigma factors suggested that their mRNA levels change little upon entry into stationary phase. Expression of Crc, BipA, Fis, HupB, HupN and the MvaT-like protein PP3693 decreased in stationary phase, while that of HupA and the MvaT-like protein PP3765 increased significantly. Expression of IHF was indicative of post-transcriptional control. These results provide the first global study of the expression of the transcriptional machinery through the exponential stationary-phase shift in P. putida.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/genética , ARN Mensajero/metabolismo , Elementos Reguladores de la Transcripción/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Oligonucleótidos , Pseudomonas putida/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA