Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Chem ; 93(23): 8300-8308, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34076421

RESUMEN

The chemical and electronic structures of 15 different sulfates are studied using S L2,3 soft X-ray emission spectroscopy (XES). Sulfur L2,3 XES spectra of sulfates are distinctively different from those of other sulfur compounds, which makes XES a powerful technique for sulfate detection. Furthermore, subtle but distinct differences between the spectra of sulfates with different cations are observed, which allow a further differentiation of the specific compound. Most prominently, the position and width of the emission from "S 3s" derived bands systematically vary for different compounds, which can be understood with electronic structure and spectral calculations based on density functional theory.


Asunto(s)
Sulfatos , Óxidos de Azufre , Espectrometría por Rayos X , Azufre
2.
J Synchrotron Radiat ; 28(Pt 2): 609-617, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650573

RESUMEN

X-SPEC is a high-flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X-ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable-line-space plane-grating monochromator, a double-crystal monochromator and three Kirkpatrick-Baez mirror pairs. By selectively moving these elements in or out of the beam, X-SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra-high-vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X-ray absorption spectroscopy (XAS), extended X-ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X-ray PES (HAXPES), as well as X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS).

3.
Chemistry ; 22(46): 16400-16405, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27540703

RESUMEN

The development of iridium-free, yet efficient emitters with thermally activated delayed fluorescence (TADF) was an important step towards mass production of organic light-emitting diodes (OLEDs). Progress is currently impeded by the low solubility and low chemical stability of the materials. Herein, we present a CuI -based TADF emitter that is sufficiently chemically stable under ambient conditions and can be processed by printing techniques. The solubility is drastically enhanced (to 100 g L-1 ) in relevant printing solvents. The integrity of the complex is preserved in solution, as was demonstrated by X-ray absorption spectroscopy and other techniques. In addition, it was found that the optoelectronic properties are not affected even when partly processing under ambient conditions. As a highlight, we present a TADF-based OLED device that reached an efficiency of 11±2 % external quantum efficiency (EQE).

4.
Inorg Chem ; 53(15): 7837-47, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25028770

RESUMEN

Luminescent Cu(I) complexes are interesting candidates as dopants in organic light-emitting diodes (OLEDs). However, open questions remain regarding the stability of such complexes in solution and therefore their suitability for solution processing. Since the emission behavior of Cu(I) emitters often drastically differs between bulk and thin film samples, it cannot be excluded that changes such as partial decomposition or formation of alternative emitting compounds upon processing are responsible. In this study, we present three particularly interesting candidates of the recently established copper-halide-(diphenylphosphino)pyridine derivatives (PyrPHOS) family that do not show such changes. We compare single crystals, amorphous bulk samples, and neat thin films in order to verify whether the material remains stable upon processing. Solid-state nuclear magnetic resonance (MAS (31)P NMR) was used to investigate the electronic environment of the phosphorus atoms, and X-ray absorption spectroscopy at the Cu K edge provides insight into the local electronic and geometrical environment of the copper(I) metal centers of the samples. Our results suggest that--unlike other copper(I) complexes--the copper-halide-PyrPHOS clusters are significantly more stable upon processing and retain their initial structure upon quick precipitation as well as thin film processing.


Asunto(s)
Cobre/química , Piridinas/química , Espectroscopía de Resonancia Magnética , Soluciones , Espectroscopía de Absorción de Rayos X
5.
Phys Chem Chem Phys ; 15(16): 5967-74, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23493849

RESUMEN

This paper reports novel pyrazine-acenes containing electron-deficient heteroaromatic π-extenders, such as pyridine, pyrazine, and benzothiadiazole, directly fused with pyrazine. Electronic properties of these systems were characterized by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. Computational electronic property evaluation of all experimentally synthesized compounds is provided, and is coupled with electronic calculations of closely related compounds that were not synthetically feasible. Our theoretical results provide insight into the overall analysis and interpretation of the experimentally observed trends. In this study, we found a systematic decrease in the LUMO energy (E(LUMO)) with an increasing number of imine functions in the π-extender. Additionally, when comparing the pyrazine-acene containing pyrazine π-extender to a reference compound with C≡N peripheral substituents, we found that the imine function is comparable to the C≡N substituent in lowering E(LUMO). The most dramatic E(LUMO) lowering was experimentally observed using dibromobenzothiadiazole as a π-extender. In all cases, the HOMO energy (EHOMO) was negligibly affected, thus we found options for electronic property control based solely on E(LUMO) manipulation. This is computationally validated by an examination of the molecular orbitals in which the LUMO orbital was found predominantly on the π-extender section of the molecules, while the HOMO orbital was localized away from the π-extender. Interestingly, the self-assembly of all the experimentally synthesized compounds showed excellent one-dimensional fiber formation in spite of their large π-core framework. These fibers were characterized by atomic force microscopy and UV-Vis spectroscopy.

6.
J Clin Exp Dent ; 15(10): e835-e841, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37933395

RESUMEN

Background: This study evaluates the remineralization potential of enamel after bioactive glass (BAG) air abrasion, using Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy Analysis (SEM-EDS), Electron Probe Microanalysis (EPMA), and Atomic Force Microscopy (AFM). Material and Methods: Forty extracted human third molars were divided into four groups with ten samples each. Three groups were subjected to a demineralizing solution of 2.2 mM calcium chloride, 2.2 mM monopotassium phosphate, and 0.05 mM acetic acid, adjusted to a pH of 4.4 using 1 M potassium hydroxide at an intraoral temperature of 37°C for 96 hours. Of the three groups, two were subjected to air abrasion with BAG. One of the air abrasion groups was then further remineralized in 1.5 mM calcium chloride, 0.9 mM sodium phosphate, and 0.15 M potassium chloride, adjusted to a pH of 7.0 at 37°C. The teeth were then evaluated via SEM-EDS and EPMA to measure the calcium-to-phosphorous (Ca:P) ratios, and the surface morphology was investigated using AFM. Results: A measurable decrease in the Ca:P ratio was found after demineralization, which subsequently increased after remineralization. A thin layer of demineralized enamel was removed by the BAG air abrasion. AFM image analysis showed the presence of pits on the surface, which decreased in depth after demineralization, and further after BAG abrasion. Remineralized samples, in contrast, showed a slight increase in pit depth. While the observation of remineralization was statistically significant throughout our study, we could not find any evidence for BAG retention on the surface of the enamel. Conclusions: It is demonstrated that BAG, when delivered via air abrasion, indeed contributes to remineralization of the enamel; however, it does not seem to be a direct result of the presence of retained glass beads on the enamel surface. Given the increase of the Ca:P ratio after remineralization, a possible therapeutic benefit was observed, potentially reducing the probability of fractures in weakened enamel. Key words:Enamel, Demineralization, Remineralization, White Spot Lesions, Bioactive Glass, Air Abrasion, Energy Dispersive X-ray Spectroscopy, Electron Probe Microanalysis, Atomic Force Microscopy, Ca:P ratio, surface morphology.

7.
ACS Omega ; 8(5): 4921-4927, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777614

RESUMEN

The sulfur L2,3 X-ray emission spectra of the alkaline earth metal sulfides BeS, MgS, CaS, SrS, and BaS are investigated and compared with spectra calculations based on density functional theory. Very distinct spectral shapes are found for the different compounds. With decreasing electronegativity of the cation, that is, increasing ionic bonding character, the upper valence band width and its relative spectral intensity decrease. These general trends are qualitatively reproduced by the spectra calculations, which give quite an accurate description of the spectral shapes in the upper valence band region. On the low energy side of the sulfur 3s → 2p transition dominating the spectra, we find strong satellites caused by "semi-Auger" decays involving configuration interaction. These satellites, previously believed to be energetically forbidden for sulfur L2,3 emission and only observed for the L2,3 emission of Cl to Cr, increase in intensity as the bonding character becomes more ionic and dominate the spectra for SrS and BaS. The intensities, energies, and widths of the satellites vary strongly between the investigated compounds, giving a very specific spectral fingerprint that can be used for speciation analysis.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37913778

RESUMEN

We report on the chemical structure of Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorber surfaces and their interface with a sputter-deposited Ga2O3 buffer. The CIGSe samples were exposed to a RbF postdeposition treatment and an ammonia-based rinsing step, as used in corresponding thin-film solar cells. For a detailed chemical analysis of the impact of these treatments, we employed laboratory-based X-ray photoelectron spectroscopy, X-ray-excited Auger electron spectroscopy, and synchrotron-based hard X-ray photoelectron spectroscopy. On the RbF-treated surface, we find both Rb and F, which are then partly (Rb) and completely (F) removed by the rinse. The rinse also removes Ga-F, Ga-O, and In-O surface bonds and reduces the Ga/(Ga + In) ratio at the CIGSe absorber surface. After Ga2O3 deposition, we identify the formation of In oxides and the diffusion of Rb and small amounts of F into/onto the Ga2O3 buffer layer but no indication of the formation of hydroxides.

9.
J Chem Phys ; 136(14): 144311, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22502522

RESUMEN

The electronic structure of gas-phase H(2)O and D(2)O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a(1) resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

10.
Nano Lett ; 11(8): 3503-9, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21766825

RESUMEN

This work reports a facile method for preparing highly photoactive α-Fe(2)O(3) films as well as their implementation as photoanodes for water oxidation. Transparent α-Fe(2)O(3) films were prepared by a new deposition-annealing (DA) process using nontoxic iron(III) chloride as the Fe precursor, followed by annealing at 550 °C in air. Ti-doped α-Fe(2)O(3) films were prepared by the same method, with titanium butoxide added as the Ti precursor. Impedance measurements show that the Ti-dopant serves as an electron donor and increases the donor density by 2 orders of magnitude. The photoelectrochemical performance of undoped and Ti-doped α-Fe(2)O(3) photoanodes was characterized and optimized through controlled variation of the Fe and Ti precursor concentration, annealing conditions, and the number of DA cycles. Compared to the undoped sample, the photocurrent onset potential of Ti-doped α-Fe(2)O(3) is shifted about 0.1-0.2 V to lower potential, thus improving the photocurrent and incident photon to current conversion efficiency (IPCE) at lower bias voltages. Significantly, the optimized Ti-doped α-Fe(2)O(3) film achieved the highest photocurrent density (1.83 mA/cm(2)) and IPCE values at 1.02 V vs RHE for α-Fe(2)O(3) photoanode. The enhanced photocurrent is attributed to the improved donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds, as a result of Ti doping.


Asunto(s)
Compuestos Férricos/química , Agua/química , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Fotoquímica
11.
J Phys Chem B ; 126(48): 10185-10193, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36418225

RESUMEN

The amino group of proline is part of a pyrrolidine ring, which makes it unique among the proteinogenic amino acids. To unravel its full electronic structure, proline in solid state and aqueous solution is investigated using X-ray emission spectroscopy and resonant inelastic soft X-ray scattering. By controlling the pH value of the solution, proline is studied in its cationic, zwitterionic, and anionic configurations. The spectra are analyzed within a "building-block principle" by comparing with suitable reference molecules, i.e., acetic acid, cysteine, and pyrrolidine, as well as with spectral calculations based on density functional theory. We find that the electronic structure of the carboxyl group of proline is very similar to that of other amino acids as well as acetic acid. In contrast, the electronic structure of the amino group is significantly different and strongly influenced by the ring structure of proline.


Asunto(s)
Acetatos , Prolina , Rayos X , Espectrometría por Rayos X
12.
J Phys Chem C Nanomater Interfaces ; 125(46): 25917-25926, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34868447

RESUMEN

The electronic structures of four precursors for organic-inorganic hybrid perovskites, namely, methylammonium chloride and iodide, as well as formamidinium bromide and iodide, are investigated by X-ray emission (XE) spectroscopy at the carbon and nitrogen K-edges. The XE spectra are analyzed based on density functional theory calculations. We simulate the XE spectra at the Kohn-Sham level for ground-state geometries and carry out detailed analyses of the molecular orbitals and the electronic density of states to give a thorough understanding of the spectra. Major parts of the spectra can be described by the model of the corresponding isolated organic cation, whereas high-emission energy peaks in the nitrogen K-edge XE spectra arise from electronic transitions involving hybrids of the molecular and atomic orbitals of the cations and halides, respectively. We find that the interaction of the methylammonium cation is stronger with the chlorine than with the iodine anion. Furthermore, our detailed theoretical analysis highlights the strong influence of ultrafast proton dynamics in the core-excited states, which is an intrinsic effect of the XE process. The inclusion of this effect is necessary for an accurate description of the experimental nitrogen K-edge X-ray emission spectra and gives information on the hydrogen-bonding strengths in the different precursor materials.

13.
ACS Appl Mater Interfaces ; 13(44): 53202-53210, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709800

RESUMEN

2D/3D perovskite heterostructures have emerged as a promising material composition to reduce nonradiative recombination in perovskite-based LEDs and solar cells. Such heterostructures can be created by a surface treatment with large organic cations, for example, n-butylammonium bromide (BABr). To understand the impact of the BABr surface treatment on the double-cation (Cs0.17FA0.83Pb(I0.6Br0.4)3) (FA = formamidinium) perovskite thin film and further optimize the corresponding structures, an in-depth understanding of the chemical and electronic properties of the involved surfaces, interfaces, and bulk is required. Hence, we study the impact of the BABr treatment with a combination of surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive resonant inelastic soft X-ray scattering (RIXS). A quantitative analysis of the BABr-treated perovskite thin film shows a modified chemical perovskite surface environment of carbon, nitrogen, bromine, iodine, and lead, indicating that the treatment leads to a perovskite surface with a modified composition and bonding structure. With K-edge RIXS, the local environment at the nitrogen and carbon atoms is probed, allowing us to identify the presence of BABr in the perovskite bulk albeit with a modified bonding environment. This, in turn, identifies a "hidden parameter" for the optimization of the BABr treatment and overall performance of 2D/3D perovskite solar cell absorbers.

14.
RSC Adv ; 11(21): 12687-12695, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35423831

RESUMEN

Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for Cu2ZnSn(S,Se)4 solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive H2S gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film.

15.
J Phys Chem Lett ; 12(16): 3885-3890, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33856793

RESUMEN

The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

16.
J Am Chem Soc ; 132(16): 5789-92, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20356075

RESUMEN

The chemical surface structure of Ti-decorated single-walled carbon nanotubes (SWNTs) is studied. X-ray photoelectron spectra show that Ti adatoms on the SWNT surface oxidize even under ultra-high-vacuum conditions, presenting a serious obstacle for the use of Ti-decorated SWNTs for hydrogen storage. A subsequent deposition of Li can, however, reduce the degree of Ti oxidation, "liberating" Ti atoms for the interaction with hydrogen molecules in hydrogen storage applications.

17.
Langmuir ; 26(16): 13630-6, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695613

RESUMEN

This paper reports the electronic and organogelation properties of novel T-shaped bisphenazines functionalized with alkyl side groups and small peripheral cyano (CN) or aldehyde (CHO) substituents. UV-vis spectroscopy and cyclic voltammetry show the effect of the position, type, and number of the peripheral substituents on the electronic properties of the entire system. Interesting organogelation properties including a thixotropic behavior were observed from these T-shaped bisphenazines. We describe important findings from an in-depth characterization on the fibers formed by organogelation: (i) The position of the peripheral substituents influences the fiber morphology by modulating the intermolecular CN (or CHO) interaction and the pi-pi stacking. (ii) Compounds with CHO groups form islands of fiber aggregates, which is not the case for compounds with CN groups. (iii) Decyl-substituted compounds show higher gelation temperatures (i.e., produce stronger gels) than hexadecyl-substituted ones. (iv) The thixotropic behavior originates from an extensive three-dimensional entanglement of very thin, flexible fibers.

18.
J Phys Chem Lett ; 11(18): 7476-7482, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32787301

RESUMEN

The nitrogen K-edge resonant inelastic X-ray scattering (RIXS) map of nitric oxide (NO) has been measured and simulated to provide a detailed analysis of the observed features. High-resolution experimental RIXS maps were collected using an in situ gas flow cell and a high-transmission soft X-ray spectrometer. Accurate descriptions of the ground, excited, and core-excited states are based upon restricted active space self-consistent-field calculations using second order multiconfigurational perturbation theory. The nitrogen K-edge RIXS map of NO shows a range of features that can be assigned to intermediate states arising from 1s → π* and 1s → Rydberg excitations; additional bands are attributed to doubly excited intermediate states comprising 1s → π* and π → π* excitations. These results provide a detailed picture of RIXS for an open-shell molecule and an extensive description of the core-excited electronic structure of NO, an important molecule in many chemical and biological processes.

19.
Adv Mater ; 31(26): e1806660, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30791138

RESUMEN

Thin-film solar cells have great potential to overtake the currently dominant silicon-based solar cell technologies in a strongly growing market. Such thin-film devices consist of a multilayer structure, for which charge-carrier transport across interfaces plays a crucial role in minimizing the associated recombination losses and achieving high solar conversion efficiencies. Further development can strongly profit from a high-level characterization that gives a local, electronic, and chemical picture of the interface properties, which allows for an insight-driven optimization. Herein, the authors' recent progress of applying a "toolbox" of high-level laboratory- and synchrotron-based electron and soft X-ray spectroscopies to characterize the chemical and electronic properties of such applied interfaces is provided. With this toolbox in hand, the activities are paired with those of experts in thin-film solar cell preparation at the cutting edge of current developments to obtain a deeper understanding of the recent improvements in the field, e.g., by studying the influence of so-called "post-deposition treatments", as well as characterizing the properties of interfaces with alternative buffer layer materials that give superior efficiencies on large, module-sized areas.

20.
Beilstein J Nanotechnol ; 10: 2396-2409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886116

RESUMEN

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>105 cm-1 at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380-740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm2 to cm2 areas, the Sb2S3 hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm2 Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA