Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(5): 2112-2126, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38970460

RESUMEN

PURPOSE: T2-weighted DANTE-SPACE (Delay Alternating with Nutation for Tailored Excitation - Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) sequences facilitate non-invasive intracranial vessel wall imaging at 7T through simultaneous suppression of blood and CSF. However, the achieved vessel wall delineation depends closely on the selected sequence parameters, and little information is available about the performance of the sequence using more widely available 3T MRI. Therefore, in this paper a comprehensive DANTE-SPACE simulation framework is used for the optimization and quantitative comparison of T2-weighted DANTE-SPACE at both 7T and 3T. METHODS: Simulations are used to propose optimized sequence parameters at both 3T and 7T. At 7T, an additional protocol which uses a parallel transmission (pTx) shim during the DANTE preparation for improved suppression of inflowing blood is also proposed. Data at both field strengths using optimized and literature protocols are acquired and quantitatively compared in six healthy volunteers. RESULTS: At 7T, more vessel wall signal can be retained while still achieving sufficient CSF suppression by using fewer DANTE pulses than described in previous implementations. The use of a pTx shim during DANTE at 7T provides a modest further improvement to the inner vessel wall delineation. At 3T, aggressive DANTE preparation is required to achieve CSF suppression, resulting in reduced vessel wall signal. As a result, the achievable vessel wall definition at 3T is around half that of 7T. CONCLUSION: Simulation-based optimization of DANTE parameters facilitates improved T2-weighted DANTE-SPACE contrasts at 7T. The improved vessel definition of T2-weighted DANTE-SPACE at 7T makes DANTE preparation more suitable for T2-weighted VWI at 7T than at 3T.


Asunto(s)
Algoritmos , Encéfalo , Simulación por Computador , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Adulto , Imagen por Resonancia Magnética/métodos , Masculino , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Angiografía por Resonancia Magnética/métodos , Voluntarios Sanos , Interpretación de Imagen Asistida por Computador/métodos
2.
Magn Reson Med ; 92(1): 332-345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38469983

RESUMEN

PURPOSE: The delay alternating with nutation for tailored excitation (DANTE)-sampling perfection with application-optimized contrasts (SPACE) sequence facilitates 3D intracranial vessel wall imaging with simultaneous suppression of blood and CSF. However, the achieved image contrast depends closely on the selected sequence parameters, and the clinical use of the sequence is limited in vivo by observed signal variations in the vessel wall, CSF, and blood. This paper introduces a comprehensive DANTE-SPACE simulation framework, with the aim of providing a better understanding of the underlying contrast mechanisms and facilitating improved parameter selection and contrast optimization. METHODS: An extended phase graph formalism was developed for efficient spin ensemble simulation of the DANTE-SPACE sequence. Physiological processes such as pulsatile flow velocity variation, varying flow directions, intravoxel velocity variation, diffusion, and B 1 + $$ {\mathrm{B}}_1^{+} $$ effects were included in the framework to represent the mechanisms behind the achieved signal levels accurately. RESULTS: Intravoxel velocity variation improved temporal stability and robustness against small velocity changes. Time-varying pulsatile velocity variation affected CSF simulations, introducing periods of near-zero velocity and partial rephasing. Inclusion of diffusion effects was found to substantially reduce the CSF signal. Blood flow trajectory variations had minor effects, but B 1 + $$ {\mathrm{B}}_1^{+} $$ differences along the trajectory reduced DANTE efficiency in low- B 1 + $$ {\mathrm{B}}_1^{+} $$ areas. Introducing low-velocity pulsatility of both CSF and vessel wall helped explain the in vivo observed signal heterogeneity in both tissue types. CONCLUSION: The presented simulation framework facilitates a more comprehensive optimization of DANTE-SPACE sequence parameters. Furthermore, the simulation framework helps to explain observed contrasts in acquired data.


Asunto(s)
Algoritmos , Encéfalo , Simulación por Computador , Imagenología Tridimensional , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Imagenología Tridimensional/métodos , Velocidad del Flujo Sanguíneo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Flujo Pulsátil/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos
3.
Magn Reson Med ; 91(1): 190-204, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37794847

RESUMEN

PURPOSE: Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS: A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS: The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION: B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.


Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Cabeza/diagnóstico por imagen , Cuello/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Ondas de Radio , Fantasmas de Imagen
4.
Magn Reson Med ; 92(5): 2007-2020, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38934380

RESUMEN

PURPOSE: To acquire accurate volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS: We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit array B 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absolute B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in a B 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampled B 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS: Simulation and in vivo results show that volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION: The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.


Asunto(s)
Algoritmos , Encéfalo , Corazón , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Encéfalo/diagnóstico por imagen , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Masculino , Reproducibilidad de los Resultados
5.
Magn Reson Med ; 89(3): 964-976, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336893

RESUMEN

PURPOSE: To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS: SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS: The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION: Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.


Asunto(s)
Encéfalo , Corazón , Reproducibilidad de los Resultados , Corazón/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tórax , Mapeo Encefálico/métodos
6.
J Magn Reson Imaging ; 57(3): 690-705, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326548

RESUMEN

Complex engineered systems are often equipped with suites of sensors and ancillary devices that monitor their performance and maintenance needs. MRI scanners are no different in this regard. Some of the ancillary devices available to support MRI equipment, the ones of particular interest here, have the distinction of actually participating in the image acquisition process itself. Most commonly, such devices are used to monitor physiological motion or variations in the scanner's imaging fields, allowing the imaging and/or reconstruction process to adapt as imaging conditions change. "Classic" examples include electrocardiography (ECG) leads and respiratory bellows to monitor cardiac and respiratory motion, which have been standard equipment in scan rooms since the early days of MRI. Since then, many additional sensors and devices have been proposed to support MRI acquisitions. The main physical properties that they measure may be primarily "mechanical" (eg acceleration, speed, and torque), "acoustic" (sound and ultrasound), "optical" (light and infrared), or "electromagnetic" in nature. A review of these ancillary devices, as currently available in clinical and research settings, is presented here. In our opinion, these devices are not in competition with each other: as long as they provide useful and unique information, do not interfere with each other and are not prohibitively cumbersome to use, they might find their proper place in future suites of sensors. In time, MRI acquisitions will likely include a plurality of complementary signals. A little like the microbiome that provides genetic diversity to organisms, these devices can provide signal diversity to MRI acquisitions and enrich measurements. Machine-learning (ML) algorithms are well suited at combining diverse input signals toward coherent outputs, and they could make use of all such information toward improved MRI capabilities. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/fisiología , Electrocardiografía , Movimiento (Física) , Movimiento/fisiología
7.
Magn Reson Med ; 88(2): 880-889, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35344622

RESUMEN

PURPOSE: 3D time-of-flight MRA can accurately visualize the intracranial vasculature but is limited by long acquisition times. Compressed sensing reconstruction can be used to substantially accelerate acquisitions. The quality of those reconstructions depends on the undersampling patterns used. In this work, we optimize sets of undersampling parameters for various acceleration factors of Cartesian 3D time-of-flight MRA. METHODS: Fully sampled datasets, acquired at 7 Tesla, were retrospectively undersampled using variable-density Poisson disk sampling with various autocalibration region sizes, polynomial orders, and acceleration factors. The accuracy of reconstructions from the different undersampled datasets was assessed using the vessel-masked structural similarity index. Identified optimal undersampling parameters were then evaluated in additional prospectively undersampled datasets. Compressed sensing reconstruction parameters were chosen based on a preliminary reconstruction parameter optimization. RESULTS: For all acceleration factors, using a fully sampled calibration area of 12 × 12 k-space lines and a polynomial order of 2 resulted in the highest image quality. The importance of parameter optimization of the sampling was found to increase for higher acceleration factors. The results were consistent across resolutions and regions of interest with vessels of varying sizes and tortuosity. The number of visible small vessels increased by 7.0% and 14.2% when compared to standard parameters for acceleration factors of 7.2 and 15, respectively. CONCLUSION: The image quality of compressed sensing time-of-flight MRA can be improved by appropriate choice of undersampling parameters. The optimized sets of parameters are independent of the acceleration factor and enable a larger number of vessels to be visualized.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Aceleración , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Estudios Retrospectivos
8.
Magn Reson Med ; 86(5): 2454-2467, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34196031

RESUMEN

PURPOSE: To evaluate an algorithm for calibrationless parallel imaging to reconstruct undersampled parallel transmit field maps for the body and brain. METHODS: Using a combination of synthetic data and in vivo measurements from brain and body, 3 different approaches to a joint transmit and receive low-rank tensor completion algorithm are evaluated. These methods included: 1) virtual coils using the product of receive and transmit sensitivities, 2) joint-receiver coils that enforces a low rank structure across receive coils of all transmit modes, and 3) transmit low rank that uses a low rank structure for both receive and transmit modes simultaneously. The performance of each is investigated for different noise levels and different acceleration rates on an 8-channel parallel transmit 7 Tesla system. RESULTS: The virtual coils method broke down with increasing noise levels or acceleration rates greater than 2, producing normalized RMS error greater than 0.1. The joint receiver coils method worked well up to acceleration factors of 4, beyond which the normalized RMS error exceeded 0.1. Transmit low rank enabled an eightfold acceleration, with most normalized RMS errors remaining below 0.1. CONCLUSION: This work demonstrates that undersampling factors of up to eightfold are feasible for transmit array mapping and can be reconstructed using calibrationless parallel imaging methods.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Aceleración , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen
9.
Magn Reson Med ; 85(2): 1114-1122, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32845034

RESUMEN

PURPOSE: Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images. This study uses electromagnetic simulations to investigate the minimum number of tissue groups required to accurately determine SAR in the human head. METHODS: Tissue types from a fully characterized electromagnetic human model with 47 tissue types in the head and neck region were grouped into different tissue clusters based on the conductivities, permittivities, and mass densities of the tissues. Electromagnetic simulations of the head model inside a parallel transmit head coil at 7 tesla were used to determine the minimum number of required tissue clusters to accurately determine the subject-specific SAR. The identified tissue clusters were then evaluated using 2 additional well-characterized electromagnetic human models. RESULTS: A minimum of 4-clusters-plus-air was found to be required for accurate SAR estimation. These tissue clusters are centered around gray matter, fat, cortical bone, and cerebrospinal fluid. For all 3 simulated models, the parallel transmit maximum 10g SAR was consistently determined to within an error of <12% relative to the full 47-tissue model. CONCLUSION: A minimum of 4-clusters-plus-air are required to produce accurate personalized SAR simulations of the human head when using parallel transmit at 7 tesla.


Asunto(s)
Cabeza , Imagen por Resonancia Magnética , Simulación por Computador , Campos Electromagnéticos , Cabeza/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Ondas de Radio
10.
NMR Biomed ; 34(5): e4364, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33089547

RESUMEN

Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.


Asunto(s)
Consenso , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Testimonio de Experto , Humanos , Imagen por Resonancia Magnética , Metaboloma , Ácido gamma-Aminobutírico/metabolismo
11.
J Cardiovasc Magn Reson ; 23(1): 29, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33745457

RESUMEN

BACKGROUND: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows sophisticated quantification of left atrial (LA) blood flow, and could yield novel biomarkers of propensity for intra-cardiac thrombus formation and embolic stroke. As reproducibility is critically important to diagnostic performance, we systematically investigated technical and temporal variation of LA 4D flow in atrial fibrillation (AF) and sinus rhythm (SR). METHODS: Eighty-six subjects (SR, n = 64; AF, n = 22) with wide-ranging stroke risk (CHA2DS2VASc 0-6) underwent LA 4D flow assessment of peak and mean velocity, vorticity, vortex volume, and stasis. Eighty-five (99%) underwent a second acquisition within the same session, and 74 (86%) also returned at 30 (27-35) days for an interval scan. We assessed variability attributable to manual contouring (intra- and inter-observer), and subject repositioning and reacquisition of data, both within the same session (same-day scan-rescan), and over time (interval scan). Within-subject coefficients of variation (CV) and bootstrapped 95% CIs were calculated and compared. RESULTS: Same-day scan-rescan CVs were 6% for peak velocity, 5% for mean velocity, 7% for vorticity, 9% for vortex volume, and 10% for stasis, and were similar between SR and AF subjects (all p > 0.05). Interval-scan variability was similar to same-day scan-rescan variability for peak velocity, vorticity, and vortex volume (all p > 0.05), and higher for stasis and mean velocity (interval scan CVs of 14% and 8%, respectively, both p < 0.05). Longitudinal changes in heart rate and blood pressure at the interval scan in the same subjects were associated with significantly higher variability for LA stasis (p = 0.024), but not for the remaining flow parameters (all p > 0.05). SR subjects showed significantly greater interval-scan variability than AF patients for mean velocity, vortex volume, and stasis (all p < 0.05), but not peak velocity or vorticity (both p > 0.05). CONCLUSIONS: LA peak velocity and vorticity are the most reproducible and temporally stable novel LA 4D flow biomarkers, and are robust to changes in heart rate, blood pressure, and differences in heart rhythm.


Asunto(s)
Fibrilación Atrial/diagnóstico por imagen , Función del Atrio Izquierdo , Atrios Cardíacos/diagnóstico por imagen , Frecuencia Cardíaca , Imagen por Resonancia Cinemagnética , Anciano , Fibrilación Atrial/fisiopatología , Estudios de Casos y Controles , Femenino , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Factores de Tiempo
12.
Magn Reson Med ; 83(6): 2026-2041, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31697862

RESUMEN

PURPOSE: To assess whether artifacts in multi-slice multi-echo spin echo neck imaging, thought to be caused by brief motion events such as swallowing, can be corrected by reacquiring corrupted central k-space data and estimating the remainder with parallel imaging. METHODS: A single phase-encode line (ky = 0, phase-encode direction anteroposterior) navigator echo was used to identify motion-corrupted data and guide the online reacquisition. If motion corruption was detected in the 7 central k-space lines, they were replaced with reacquired data. Subsequently, GRAPPA reconstruction was trained on the updated central portion of k-space and then used to estimate the remaining motion-corrupted k-space data from surrounding uncorrupted data. Similar compressed sensing-based approaches have been used previously to compensate for respiration in cardiac imaging. The g-factor noise amplification was calculated for the parallel imaging reconstruction of data acquired with a 10-channel neck coil. The method was assessed in scans with 9 volunteers and 12 patients. RESULTS: The g-factor analysis showed that GRAPPA reconstruction of 2 adjacent motion-corrupted lines causes high noise amplification; therefore, the number of 2-line estimations should be limited. In volunteer scans, median ghosting reduction of 24% was achieved with 2 adjacent motion-corrupted lines correction, and image quality was improved in 2 patient scans that had motion corruption close to the center of k-space. CONCLUSION: Motion-corrupted echo-trains can be identified with a navigator echo. Combined reacquisition and parallel imaging estimation reduced motion artifacts in multi-slice MESE when there were brief motion events, especially when motion corruption was close to the center of k-space.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Reproducibilidad de los Resultados
13.
Magn Reson Med ; 82(6): 2169-2177, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31317579

RESUMEN

PURPOSE: The scattering matrix (S-matrix) of a parallel transmit (pTx) coil is sensitive to physiological motion but requires additional monitoring RF pulses to be measured. In this work, we present and evaluate pTx RF pulse designs that simultaneously excite for imaging and measure the S-matrix to generate real-time motion signals without prolonging the image sequence. THEORY AND METHODS: Three pTx waveforms for measuring the S-matrix were identified and superimposed onto the imaging excitation RF pulses: (1) time division multiplexing, (2) frequency division multiplexing, and (3) code division multiplexing. These 3 methods were evaluated in healthy volunteers for scattering sensitivity and image artefacts. The S-matrix and real-time motion signals were calculated on the image calculation environment of the MR scanner. Prospective cardiac triggers were identified in early systole as a high rate of change of the cardiac motion signal. Monitoring accuracy was compared against electrocardiogram or the imaged diaphragm position. RESULTS: All 3 monitoring approaches measure the S-matrix during image excitation with quality correlated to input power. No image artefacts were observed for frequency multiplexing, and low energy artefacts were observed in the other methods. The accuracy of the achieved prospective cardiac gating was 15 ± 16 ms for breath hold and 24 ± 17 ms during free breathing. The diaphragm position prediction accuracy was 1.3 ± 0.9 mm. In all volunteers, good quality cine images were acquired for breath hold scans and dual gated CINEs were demonstrated. CONCLUSION: The S-matrix can be measured during image excitation to generate real-time cardiac and respiratory motion signals for prospective gating. No artefacts are introduced when frequency division multiplexing is used.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Adulto , Algoritmos , Artefactos , Contencion de la Respiración , Calibración , Técnicas de Imagen Sincronizada Cardíacas , Femenino , Frecuencia Cardíaca , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética , Masculino , Modelos Estadísticos , Respiración , Dispersión de Radiación , Procesamiento de Señales Asistido por Computador , Adulto Joven
14.
Magn Reson Med ; 80(2): 633-640, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29230860

RESUMEN

PURPOSE: To establish a cardiac signal from scattering matrix or scattering coefficient measurements made on a 7T 8-channel parallel transmit (pTx) system, and to evaluate its use for cardiac gating. METHODS: Measurements of the scattering matrix and scattering coefficients were acquired using a monitoring pulse sequence and during a standard cine acquisition, respectively. Postprocessing used an independent component analysis and gating feature identification. The effect of the phase of the excitation radiofrequency (RF) field ( B1+ shim) on the cardiac signal was simulated for multiple B1+ shim configurations, and cine images were reconstructed from both the scattering coefficients and electrocardiogram (ECG). RESULTS: The cardiac motion signal was successfully identified in all subjects with a mean signal-to-noise ratio of 33.1 and 5.7 using the scattering matrix and scattering coefficient measurements, respectively. The dominant gating feature in the cardiac signal was a peak aligned with end-systole that occurred on average at 311 and 391 ms after the ECG trigger, with a mean standard deviation of 13.4 and 18.1 ms relative to ECG when using the scattering matrix and scattering coefficients measurements, respectively. The scattering coefficients showed a dependence on B1+ shim with some shim configurations not showing any cardiac signal. Cine images were successfully reconstructed using the scattering coefficients with minimal differences compared to those using ECG. CONCLUSION: We have shown that the scattering of a pTx RF coil can be used to estimate a cardiac signal, and that scattering matrix and coefficients can be used to cardiac gate MRI acquisitions with the scattering matrix providing a superior cardiac signal. Magn Reson Med 80:633-640, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Técnicas de Imagen Sincronizada Cardíacas/métodos , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Adulto , Corazón/fisiología , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Adulto Joven
15.
Magn Reson Med ; 79(4): 2164-2169, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28771792

RESUMEN

PURPOSE: To evaluate the use of radiofrequency scattering of a parallel transmit coil to track diaphragm motion. METHODS: Measurements made during radiofrequency excitation on an 8-channel parallel transmit coil by the directional couplers of the radiofrequency safety monitor were combined and converted into diaphragm position. A 30-s subject-specific calibration with an MRI navigator was used to determine a diaphragm estimate from each directional-coupler measure. Seven healthy volunteers were scanned at 7 T, in which images of the diaphragm were continuously acquired and directional couplers were monitored during excitation radiofrequency pulses. The ability to detect coughing was evaluated in one subject. The method was implemented on the scanner and evaluated for diaphragm gating of a free-breathing cardiac cine. RESULTS: Six of the seven scans were successful. In these subjects, the root mean square difference between MRI and scattering estimation of the superior-inferior diaphragm position was 1.4 ± 0.5 mm. On the scanner, the position was calculated less than 2 ms after every radiofrequency pulse. A prospectively gated (echocardiogram and respiration) high-resolution free-breathing cine showed no respiratory artifact and sharp blood-myocardium definition. CONCLUSIONS: Transmit coil scattering is sensitive to diaphragm motion and provides rapid, quantitative, and accurate monitoring of respiration. Magn Reson Med 79:2164-2169, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Diafragma/diagnóstico por imagen , Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Calibración , Electrocardiografía/métodos , Voluntarios Sanos , Corazón/diagnóstico por imagen , Humanos , Masculino , Modelos Estadísticos , Movimiento (Física) , Miocardio/patología , Ondas de Radio , Respiración , Dispersión de Radiación
16.
J Cardiovasc Magn Reson ; 20(1): 10, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422054

RESUMEN

BACKGROUND: Abnormal aortic flow patterns in bicuspid aortic valve disease (BAV) may be partly responsible for the associated aortic dilation. Aortic valve replacement (AVR) may normalize flow patterns and potentially slow the concomitant aortic dilation. We therefore sought to examine differences in flow patterns post AVR. METHODS: Ninety participants underwent 4D flow cardiovascular magnetic resonance: 30 BAV patients with prior AVR (11 mechanical, 10 bioprosthetic, 9 Ross procedure), 30 BAV patients with a native aortic valve and 30 healthy subjects. RESULTS: The majority of subjects with mechanical AVR or Ross showed normal flow pattern (73% and 67% respectively) with near normal rotational flow values (7.2 ± 3.9 and 10.6 ± 10.5 mm2/ms respectively vs 3.8 ± 3.1 mm2/s for healthy subjects; both p > 0.05); and reduced in-plane wall shear stress (0.19 ± 0.13 N/m2 for mechanical AVR vs. 0.40 ± 0.28 N/m2 for native BAV, p < 0.05). In contrast, all subjects with a bioprosthetic AVR had abnormal flow patterns (mainly marked right-handed helical flow), with comparable rotational flow values to native BAV (20.7 ± 8.8 mm2/ms and 26.6 ± 16.6 mm2/ms respectively, p > 0.05), and a similar pattern for wall shear stress. Data before and after AVR (n = 16) supported these findings: mechanical AVR showed a significant reduction in rotational flow (30.4 ± 16.3 → 7.3 ± 4.1 mm2/ms; p < 0.05) and in-plane wall shear stress (0.47 ± 0.20 → 0.20 ± 0.13 N/m2; p < 0.05), whereas these parameters remained similar in the bioprosthetic AVR group. CONCLUSIONS: Abnormal flow patterns in BAV disease tend to normalize after mechanical AVR or Ross procedure, in contrast to the remnant abnormal flow pattern after bioprosthetic AVR. This may in part explain different aortic growth rates post AVR in BAV observed in the literature, but requires confirmation in a prospective study.


Asunto(s)
Válvula Aórtica/anomalías , Bioprótesis , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/cirugía , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Prótesis Valvulares Cardíacas , Hemodinámica , Imagen por Resonancia Magnética , Imagen de Perfusión Miocárdica/métodos , Adolescente , Adulto , Anciano , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Válvula Aórtica/cirugía , Enfermedad de la Válvula Aórtica Bicúspide , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Niño , Estudios Transversales , Femenino , Enfermedades de las Válvulas Cardíacas/fisiopatología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Diseño de Prótesis , Recuperación de la Función , Estrés Mecánico , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
17.
J Cardiovasc Magn Reson ; 20(1): 15, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499706

RESUMEN

BACKGROUND: Quantification and visualisation of left ventricular (LV) blood flow is afforded by three-dimensional, time resolved phase contrast cardiovascular magnetic resonance (CMR 4D flow). However, few data exist upon the repeatability and variability of these parameters in a healthy population. We aimed to assess the repeatability and variability over time of LV 4D CMR flow measurements. METHODS: Forty five controls underwent CMR 4D flow data acquisition. Of these, 10 underwent a second scan within the same visit (scan-rescan), 25 returned for a second visit (interval scan; median interval 52 days, IQR 28-57 days). The LV-end diastolic volume (EDV) was divided into four flow components: 1) Direct flow: inflow that passes directly to ejection; 2) Retained inflow: inflow that enters and resides within the LV; 3) Delayed ejection flow: starts within the LV and is ejected and 4) Residual volume: blood that resides within the LV for > 2 cardiac cycles. Each flow components' volume was related to the EDV (volume-ratio). The kinetic energy at end-diastole (ED) was measured and divided by the components' volume. RESULTS: The dominant flow component in all 45 controls was the direct flow (volume ratio 38 ± 4%) followed by the residual volume (30 ± 4%), then delayed ejection flow (16 ± 3%) and retained inflow (16 ± 4%). The kinetic energy at ED for each component was direct flow (7.8 ± 3.0 microJ/ml), retained inflow (4.1 ± 2.0 microJ/ml), delayed ejection flow (6.3 ± 2.3 microJ/ml) and the residual volume (1.2 ± 0.5 microJ/ml). The coefficients of variation for the scan-rescan ranged from 2.5%-9.2% for the flow components' volume ratio and between 13.5%-17.7% for the kinetic energy. The interval scan results showed higher coefficients of variation with values from 6.2-16.1% for the flow components' volume ratio and 16.9-29.0% for the kinetic energy of the flow components. CONCLUSION: LV flow components' volume and their associated kinetic energy values are repeatable and stable within a population over time. However, the variability of these measurements in individuals over time is greater than can be attributed to sources of error in the data acquisition and analysis, suggesting that additional physiological factors may influence LV flow measurements.


Asunto(s)
Circulación Coronaria , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Adulto , Anciano , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Factores de Tiempo , Función Ventricular Izquierda , Adulto Joven
19.
Neuroimage ; 155: 113-119, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28433623

RESUMEN

Combined fMRI-MRS is a novel method to non-invasively investigate functional activation in the human brain using simultaneous acquisition of hemodynamic and neurochemical measures. The aim of the current study was to quantify neural activity using combined fMRI-MRS at 7T. BOLD-fMRI and semi-LASER localization MRS data were acquired from the visual cortex of 13 participants during short blocks (64s) of flickering checkerboards. We demonstrate a correlation between glutamate and BOLD-fMRI time courses (R=0.381, p=0.031). In addition, we show increases in BOLD-fMRI (1.43±0.17%) and glutamate concentrations (0.15±0.05 I.U., ~2%) during visual stimulation. In contrast, we observed no change in glutamate concentrations in resting state MRS data during sham stimulation periods. Spectral line width changes generated by the BOLD-response were corrected using line broadening. In summary, our results establish the feasibility of concurrent measurements of BOLD-fMRI and neurochemicals using a novel combined fMRI-MRS sequence. Our findings strengthen the link between glutamate and functional activity in the human brain by demonstrating a significant correlation of BOLD-fMRI and glutamate over time, and by showing ~2% glutamate increases during 64s of visual stimulation. Our tool may become useful for studies characterizing functional dynamics between neurochemicals and hemodynamics in health and disease.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Ácido Glutámico/análisis , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Encéfalo/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Masculino
20.
Magn Reson Med ; 77(3): 1231-1237, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27037941

RESUMEN

PURPOSE: To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. METHODS: A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. RESULTS: Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. CONCLUSIONS: A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Análisis de Fourier , Humanos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA