RESUMEN
PRDM16 is a transcription co-factor that plays critical roles in development of brown adipose tissue, as well as maintenance of adult hematopoietic and neural stem cells. Here we report that PRDM16 is a histone H3K4 methyltransferase on chromatin. Mutation in the N-terminal PR domain of PRDM16 abolishes the intrinsic enzymatic activity of PRDM16. We show that the methyltransferase activity of PRDM16 is required for specific suppression of MLL fusion protein-induced leukemogenesis both in vitro and in vivo. Mechanistic studies show that PRDM16 directly activates the SNAG family transcription factor Gfi1b, which in turn downregulates the HOXA gene cluster. Knockdown Gfi1b represses PRDM16-mediated tumor suppression, while Gfi1b overexpression mimics PRDM16 overexpression. In further support of the tumor suppressor function of PRDM16, silencing PRDM16 by DNA methylation is concomitant with MLL-AF9-induced leukemic transformation. Taken together, our study reveals a previously uncharacterized function of PRDM16 that depends on its PR domain activity.
RESUMEN
Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Leucemia Bifenotípica Aguda/enzimología , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Oligopéptidos/química , Oligopéptidos/fisiología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transcriptoma/efectos de los fármacosRESUMEN
Homeobox A9 (HOXA9) is a homeodomain-containing transcription factor that plays a key role in hematopoietic stem cell expansion and is commonly deregulated in human acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, almost always in association with overexpression of its cofactor meis homeobox 1 (MEIS1) . A wide range of data suggests that HOXA9 and MEIS1 play a synergistic causative role in AML, although the molecular mechanisms leading to transformation by HOXA9 and MEIS1 remain elusive. In this study, we identify CCAAT/enhancer binding protein alpha (C/EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated leukemogenesis. We show that C/EBPα is required for the proliferation of Hoxa9/Meis1-transformed cells in culture and that loss of C/EBPα greatly improves survival in both primary and secondary murine models of Hoxa9/Meis1-induced leukemia. Over 50% of Hoxa9 genome-wide binding sites are cobound by C/EBPα, which coregulates a number of downstream target genes involved in the regulation of cell proliferation and differentiation. Finally, we show that Hoxa9 represses the locus of the cyclin-dependent kinase inhibitors Cdkn2a/b in concert with C/EBPα to overcome a block in G1 cell cycle progression. Together, our results suggest a previously unidentified role for C/EBPα in maintaining the proliferation required for Hoxa9/Meis1-mediated leukemogenesis.
Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/fisiología , Proteínas de Homeodominio/fisiología , Leucemia Experimental/fisiopatología , Proteínas de Neoplasias/fisiología , Animales , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Regiones Promotoras Genéticas , Unión ProteicaRESUMEN
PURPOSE OF REVIEW: HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS: A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY: HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Leucemia/genética , Proteínas de Neoplasias/genética , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia/metabolismo , Mutación , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleofosmina , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Translocación GenéticaRESUMEN
Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV.
Asunto(s)
Infecciones por VIH/metabolismo , Integrasa de VIH/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucemia Bifenotípica Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Sitios de Unión/genética , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , N-Metiltransferasa de Histona-Lisina , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Leucemia Bifenotípica Aguda/tratamiento farmacológico , Espectroscopía de Resonancia Magnética , Ratones Endogámicos C57BL , Modelos Moleculares , Terapia Molecular Dirigida , Mutación , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismoRESUMEN
MLL rearrangements are common in leukemia and considered an adverse risk factor. Through interactions with the polymerase-associated factor complex (PAFc), mixed lineage leukemia (MLL) fusion proteins activate genes critical for blocking differentiation, such as HOXA9. Here we investigate whether the MLL-PAFc interaction can be exploited therapeutically using both genetic and biochemical approaches. We tested the genetic requirement of the PAFc in acute myeloid leukemia (AML) using a conditional allele of the PAFc subunit, Cdc73. We show that the PAFc is indiscriminately necessary for the proliferation of AML cells through the epigenetic regulation of proleukemogenic target genes, such as MEIS1 and Bcl2. To investigate the therapeutic potential of targeting the MLL-PAFc interaction, we engineered a dominant negative fragment of MLL capable of binding to the PAFc. Disruption of the MLL-PAFc interaction selectively inhibits the proliferation of MLL leukemic cells without affecting cells transformed by an unrelated E2A-HLF fusion protein. Using in vivo hematopoietic reconstitution assays, we demonstrate that disruption of the MLL-PAFc does not alter normal hematopoietic stem cell function. Together, our data show a selective growth inhibition of MLL-associated leukemic cells and tolerance of normal hematopoiesis to disruption of the MLL-PAFc interaction establishing the MLL-PAFc interaction as an attractive therapeutic target.
Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Western Blotting , Línea Celular , Proliferación Celular , Células Cultivadas , Femenino , Regulación Leucémica de la Expresión Génica , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Proteínas Supresoras de Tumor/genéticaRESUMEN
We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML), we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.
Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Secuencia de Bases , Islas de CpG/genética , Genoma Humano , Células HCT116 , N-Metiltransferasa de Histona-Lisina , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADNRESUMEN
The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865-874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Metiltransferasas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Elongación Transcripcional/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis Sitio-Dirigida , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genéticaRESUMEN
Mixed lineage leukemia (MLL) is a key epigenetic regulator of normal hematopoietic development and chromosomal translocations involving MLL are one of the most common genetic alterations in human leukemia. Here we show that ASB2, a component of the ECS(ASB) E3 ubiquitin ligase complex, mediates MLL degradation through interaction with the PHD/Bromodomain region of MLL. Forced expression of ASB2 degrades MLL and reduces MLL transactivation activity. In contrast, the MLL-AF9 fusion protein does not interact with ASB2 and is resistant to ASB2 mediated degradation. Increased expression of ASB2 during hematopoietic differentiation is associated with decreased levels of MLL protein and down-regulation of MLL target genes. Knockdown of ASB2 leads to increased expression of HOXA9 and delayed cell differentiation. Our data support a model whereby ASB2 contributes to hematopoietic differentiation, in part, through MLL degradation and HOX gene down-regulation. Moreover, deletion of the PHD/Bromo region renders MLL fusion proteins resistant to ASB2-mediated degradation and may contribute to leukemogenesis.
Asunto(s)
Hematopoyesis , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteolisis , Proteínas Ligasas SKP Cullina F-box/fisiología , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Diferenciación Celular/genética , Células Cultivadas , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas Cullin/fisiología , Elonguina , Células HEK293 , Hematopoyesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , N-Metiltransferasa de Histona-Lisina , Humanos , Células K562 , Leucemia/etiología , Leucemia/genética , Leucemia/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , TransfecciónRESUMEN
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Hematopoyesis/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia/genética , Acetilación , Animales , Sitios de Unión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Células de la Médula Ósea/metabolismo , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Epigenómica , Femenino , Perfilación de la Expresión Génica , Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.
Asunto(s)
Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-ActividadRESUMEN
Oligomerization of AML1-ETO contributes to leukemogenesis through obscure mechanisms. In this issue of Cancer Cell, Bushweller and colleagues show the crystal structure of the ETO NHR2 domain to be a tetramer. Tetramer formation is important for maturation arrest and self-renewal, and gene expression is altered in the absence of self-association. Loss of oligomer formation disrupts interactions between AML1-ETO and members of the ETO corepressor family, but not other corepressor molecules posited to be important for leukemogenesis. The findings clarify the role of oligomer formation in AML1-ETO function and suggest a possible therapeutic strategy of targeting ETO-corepressor interactions.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Humanos , Mutación/genética , Proteínas de Fusión Oncogénica/genética , Fenotipo , Unión Proteica , Proteína 1 Compañera de Translocación de RUNX1RESUMEN
The mixed lineage leukemia protein MLL1 contains four highly conserved plant homeodomain (PHD) fingers, which are invariably deleted in oncogenic MLL1 fusion proteins in human leukemia. Here we show that the second PHD finger (PHD2) of MLL1 is an E3 ubiquitin ligase in the presence of the E2-conjugating enzyme CDC34. This activity is conserved in the second PHD finger of MLL4, the closest homolog to MLL1 but not in MLL2 or MLL3. Mutation of PHD2 leads to MLL1 stabilization, as well as increased transactivation ability and MLL1 recruitment to the target gene loci, suggesting that PHD2 negatively regulates MLL1 activity.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Activación Transcripcional/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas/fisiología , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estructura Terciaria de Proteína , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Disruptor of telomeric silencing 1-like (Dot1l) is a histone 3 lysine 79 methyltransferase. Studies of constitutive Dot1l knockout mice show that Dot1l is essential for embryonic development and prenatal hematopoiesis. DOT1L also interacts with translocation partners of Mixed Lineage Leukemia (MLL) gene, which is commonly translocated in human leukemia. However, the requirement of Dot1l in postnatal hematopoiesis and leukemogenesis of MLL translocation proteins has not been conclusively shown. With a conditional Dot1l knockout mouse model, we examined the consequences of Dot1l loss in postnatal hematopoiesis and MLL translocation leukemia. Deletion of Dot1l led to pancytopenia and failure of hematopoietic homeostasis, and Dot1l-deficient cells minimally reconstituted recipient bone marrow in competitive transplantation experiments. In addition, MLL-AF9 cells required Dot1l for oncogenic transformation, whereas cells with other leukemic oncogenes, such as Hoxa9/Meis1 and E2A-HLF, did not. These findings illustrate a crucial role of Dot1l in normal hematopoiesis and leukemogenesis of specific oncogenes.
Asunto(s)
Hematopoyesis/fisiología , Leucemia Experimental/etiología , Metiltransferasas/fisiología , Proteína de la Leucemia Mieloide-Linfoide/genética , Translocación Genética , Animales , Secuencia de Bases , Ciclo Celular , Cartilla de ADN/genética , Expresión Génica , Técnicas de Inactivación de Genes , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Leucemia Experimental/patología , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Fusión Oncogénica/genética , Oncogenes , Pancitopenia/etiologíaRESUMEN
The Additional sex combs like 1 (Asxl1) gene is 1 of 3 mammalian homologs of the Additional sex combs (Asx) gene of Drosophila. Asx is unusual because it is required to maintain both activation and silencing of Hox genes in flies and mice. Asxl proteins are characterized by an amino terminal homology domain, by interaction domains for nuclear receptors, and by a C-terminal plant homeodomain protein-protein interaction domain. A recent study of patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) revealed a high incidence of truncation mutations that would delete the PHD domain of ASXL1. Here, we show that Asxl1 is expressed in all hematopoietic cell fractions analyzed. Asxl1 knockout mice exhibit defects in frequency of differentiation of lymphoid and myeloid progenitors, but not in multipotent progenitors. We do not detect effects on hematopoietic stem cells, or in peripheral blood. Notably, we do not detect severe myelodysplastic phenotypes or leukemia in this loss-of-function model. We conclude that Asxl1 is needed for normal hematopoiesis. The mild phenotypes observed may be because other Asxl genes have redundant function with Asxl1, or alternatively, MDS or oncogenic phenotypes may result from gain-of-function Asxl mutations caused by genomic amplification, gene fusion, or truncation of Asxl1.
Asunto(s)
Hematopoyesis/genética , Leucemia/genética , Mutación/genética , Síndromes Mielodisplásicos/genética , Proteínas Represoras/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Recuento de Células , Linaje de la Célula , Células Cultivadas , Citometría de Flujo , Marcación de Gen , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Mutantes , Células Mieloides/patología , Esplenomegalia/patología , Linfocitos T/citología , Linfocitos T/metabolismo , Timo/citologíaRESUMEN
MLL fusion proteins are leukemogenic, but their mechanism is unclear. Induced dimerization of a truncated MLL immortalizes bone marrow and imposes a reversible block on myeloid differentiation associated with upregulation of Hox a7, a9, and Meis1. Both dimerized MLL and exon-duplicated MLL are potent transcriptional activators, suggesting a link between dimerization and partial tandem duplication of DNA binding domains of MLL. Dimerized MLL binds with higher affinity than undimerized MLL to a CpG island within the Hox a9 locus. However, MLL-AF9 is not dimerized in vivo. The data support a model in which either MLL dimerization/exon duplication or fusion to a transcriptional activator results in Hox gene upregulation and ultimately transformation.
Asunto(s)
Supervivencia Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/metabolismo , Sistema Hematopoyético/patología , Proteínas de Fusión Oncogénica/metabolismo , Proto-Oncogenes , Factores de Transcripción , Animales , Células de la Médula Ósea/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Dimerización , Regulación Leucémica de la Expresión Génica , Sistema Hematopoyético/metabolismo , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteína de la Leucemia Mieloide-Linfoide , Proteínas de Neoplasias/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Retroviridae , Transactivadores/metabolismoRESUMEN
The history of Indiana University School of Medicine (IUSM) dates to 1871, when Indiana Medical College entered into an affiliation with Indiana University in Bloomington to offer medical education. In 1971, the Indiana General Assembly passed a bill to create and fund a distributed model for medical education for which IUSM was responsible, an innovative approach to implementing a statewide medical education program. IUSM became one of the first U.S. medical schools to implement what is today known as a regional medical campus model. This regional medical campus system has permitted IUSM to expand enrollment based on national and local concerns about physician shortages, increase access to care locally, support expansion of graduate medical education, and provide opportunities for research and scholarship by faculty and students statewide. This effort was made possible by partnerships with other universities and health care systems across the state and the support of local community and state leaders. The model is a forward-thinking and cost-effective way to educate physicians for service in the state of Indiana and is applicable to others. This article highlights milestones in IUSM's 50-year history of regional medical education, describes the development of the regional medical campus model, recognizes significant achievements over the years, shares lessons learned, and discusses considerations for the future of medical education.
Asunto(s)
Educación Médica , Medicina , Humanos , Facultades de Medicina , Universidades , IndianaRESUMEN
One of the great paradoxes in cellular differentiation is how cells with identical DNA sequences differentiate into so many different cell types. The mechanisms underlying this process involve epigenetic regulation mediated by alterations in DNA methylation, histone posttranslational modifications, and nucleosome remodeling. It is becoming increasingly clear that disruption of the "epigenome" as a result of alterations in epigenetic regulators is a fundamental mechanism in cancer. This has major implications for the future of both molecular diagnostics as well as cancer chemotherapy.
Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Humanos , Neoplasias/terapia , Procesamiento Proteico-PostraduccionalRESUMEN
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene are associated with aggressive acute lymphoid and myeloid leukemias. These translocations are restricted to an 8.3-kb breakpoint region resulting in fusion of amino terminal MLL sequences in frame to 1 of more than 60 different translocation partners. The translocations consistently delete the plant homeodomain (PHD) fingers and more carboxyl terminal MLL sequences. The function of the PHD fingers is obscure and their specific role in transformation has not been explored. Here we show that inclusion of the PHD fingers in the MLL fusion protein MLL-AF9 blocked immortalization of hematopoietic progenitors. Inclusion of 2 or more PHD fingers reduced association with the Hoxa9 locus and suppressed Hoxa9 up-regulation in hematopoietic progenitors. These data provide an explanation for why MLL translocation breakpoints exclude the PHD fingers and suggest a possible role for these domains in regulating the function of wild-type MLL.
Asunto(s)
Transformación Celular Neoplásica/genética , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Transformación Celular Neoplásica/efectos de los fármacos , Células Cultivadas , Genes Transgénicos Suicidas/genética , Genes Supresores de Tumor/fisiología , Hematopoyesis/genética , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/farmacología , Proteínas de Homeodominio/fisiología , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transducción Genética , Ensayo de Tumor de Célula MadreRESUMEN
Disruption of epigenetic regulators of transcription is a central mechanism of oncogenesis. Many of the advances in the understanding of these mechanisms are attributable to the successful development of chromatin immunoprecipitation (ChIP) for in vivo detection of histone modifications as well as chromatin binding regulatory proteins. This is a powerful technique for analyzing histone modifications as well as binding sites for proteins that bind either directly or indirectly to DNA. Here we present two ChIP protocols. The first is particularly useful for identifying histone modifications or binding at specific, known genomic sites. The second, employing serial analysis of gene expression, is particularly powerful for the discovery of previously unidentified sites of modification or binding.