Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemistry ; : e202401339, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872486

RESUMEN

Sustainable alternatives for the energy intensive synthesis of H2O2 are necessary. Molecular cobalt catalysts show potential but are typically restricted by undesired bimolecular pathways leading to the breakdown of both H2O2 and the catalyst. The confinement of cobalt porphyrins in the PCN-224 metal-organic framework leads to an enhanced selectivity towards H2O2 and stability of the catalyst. Consequently, oxygen can now be selectively reduced to hydrogen peroxide with a stable conversion for at least 5 h, illustrating the potential of catalysts confined in MOFs to increase the selectivity and stability of electrocatalytic conversions.

2.
J Am Chem Soc ; 145(42): 23057-23067, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815483

RESUMEN

The development of an efficient electrocatalyst for the water oxidation reaction is limited by unfavorable scaling relations between catalytic intermediates, resulting in an overpotential. In contrast to heterogeneous catalysts, the electronic structure of homogeneous catalysts can be modified to a great extent due to a tailored ligand design. However, studies utilizing the tunability of organic ligands have rarely been conducted in a systematic manner and, as of yet, have not produced catalytic paths that avoid the aforementioned unfavorable scaling relations. To investigate the influence of electron-donating groups (EDGs) or electron-withdrawing groups (EWGs) on elementary steps in electrochemical water oxidation catalysis, cis-[Ru(bpy)2(H2O)]2+ (bpy = 2,2'-bipyridine) was selected as the scaffold that was modified with methyl, methoxy, chloro, and trifluoromethyl groups. This catalyst can undergo several electron transfer (ET), proton transfer (PT), and proton-coupled electron transfer (PCET) steps that were all probed experimentally. In this systematic study, it was found that PCET steps are relatively insensitive with respect to the presence of EDGs or EWGs, while the decoupled ET and PT steps are more heavily affected. However, the influence of the substituents decreases with an increasing oxidation state of Ru due to a lack of d-electrons available at the Ru center for π-backbonding to the bipyridine ligand. Therefore, the RuV/VI redox couple appears to be relatively unaffected by the substituent. Nevertheless, the implementation of EWGs can shift all oxidation events to a very narrow potential window. Not only do our findings illustrate how electronic substituents affect the entire potential energy landscape of the catalytic water oxidation reaction, but they also show that the cis-[Ru(bpy)2(H2O)]2+ compounds follow different design rules and scaling relations, as has been reported for every other oxygen evolution catalyst thus far.

3.
Inorg Chem ; 62(14): 5303-5314, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36989161

RESUMEN

To improve Cu-based water oxidation (WO) catalysts, a proper mechanistic understanding of these systems is required. In contrast to other metals, high-oxidation-state metal-oxo species are unlikely intermediates in Cu-catalyzed WO because π donation from the oxo ligand to the Cu center is difficult due to the high number of d electrons of CuII and CuIII. As a consequence, an alternative WO mechanism must take place instead of the typical water nucleophilic attack and the inter- or intramolecular radical-oxo coupling pathways, which were previously proposed for Ru-based catalysts. [CuII(HL)(OTf)2] [HL = Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine)] was investigated as a WO catalyst bearing the redox-active HL ligand. The Cu catalyst was found to be active as a WO catalyst at pH 11.5, at which the deprotonated complex [CuII(L-)(H2O)]+ is the predominant species in solution. The overall WO mechanism was found to be initiated by two proton-coupled electron-transfer steps. Kinetically, a first-order dependence in the catalyst, a zeroth-order dependence in the phosphate buffer, a kinetic isotope effect of 1.0, a ΔH⧧ value of 4.49 kcal·mol-1, a ΔS⧧ value of -42.6 cal·mol-1·K-1, and a ΔG⧧ value of 17.2 kcal·mol-1 were found. A computational study supported the formation of a Cu-oxyl intermediate, [CuII(L•)(O•)(H2O)]+. From this intermediate onward, formation of the O-O bond proceeds via a single-electron transfer from an approaching hydroxide ion to the ligand. Throughout the mechanism, the CuII center is proposed to be redox-inactive.

4.
Inorg Chem ; 62(48): 19593-19602, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37976110

RESUMEN

Changes in the electronic structure of copper complexes can have a remarkable impact on the catalytic rates, selectivity, and overpotential of electrocatalytic reactions. We have investigated the effect of the half-wave potential (E1/2) of the CuII/CuI redox couples of four copper complexes with different pyridylalkylamine ligands. A linear relationship was found between E1/2 of the catalysts and the logarithm of the maximum rate constant of the reduction of O2 and H2O2. Computed binding constants of the binding of O2 to CuI, which is the rate-determining step of the oxygen reduction reaction, also correlate with E1/2. Higher catalytic rates were found for catalysts with more negative E1/2 values, while catalytic reactions with lower overpotentials were found for complexes with more positive E1/2 values. The reduction of O2 is more strongly affected by the E1/2 than the H2O2 rates, resulting in that the faster catalysts are prone to accumulate peroxide, while the catalysts operating with a low overpotential are set up to accommodate the 4-electron reduction to water. This work shows that the E1/2 is an important descriptor in copper-mediated O2 reduction and that producing hydrogen peroxide selectively close to its equilibrium potential at 0.68 V vs reversible hydrogen electrode (RHE) may not be easy.

5.
Inorg Chem ; 59(22): 16398-16409, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33108871

RESUMEN

To date, the copper complex with the tris(2-pyridylmethyl)amine (tmpa) ligand (Cu-tmpa) catalyzes the ORR with the highest reported turnover frequency (TOF) for any molecular copper catalyst. To gain insight into the importance of the tetradentate nature and high flexibility of the tmpa ligand for efficient four-electron ORR catalysis, the redox and electrocatalytic ORR behavior of the copper complexes of 2,2':6',2″-terpyridine (terpy) and bis(2-pyridylmethyl)amine (bmpa) (Cu-terpy and Cu-bmpa, respectively) were investigated in the present study. With a combination of cyclic voltammetry and rotating ring disk electrode measurements, we demonstrate that the presence of the terpy and bmpa ligands results in a decrease in catalytic ORR activity and an increase in Faradaic efficiency for H2O2 production. The lower catalytic activity is shown to be the result of a stabilization of the CuI state of the complex compared to the earlier reported Cu-tmpa catalyst. This stabilization is most likely caused by the lower electron donating character of the tridentate terpy and bmpa ligands compared to the tetradentate tmpa ligand. The Laviron plots of the redox behavior of Cu-terpy and Cu-bmpa indicated that the formation of the ORR active catalyst involves relatively slow electron transfer kinetics which is caused by the inability of Cu-terpy and Cu-bmpa to form the preferred tetrahedral coordination geometry for a CuI complex easily. Our study illustrates that both the tetradentate nature of the tmpa ligand and the ability of Cu-tmpa to form the preferred tetrahedral coordination geometry for a CuI complex are of utmost importance for ORR catalysis with very high catalytic rates.

6.
Inorg Chem ; 58(19): 13007-13019, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31549820

RESUMEN

The structure of the copper complex of the 6-((1-butanethiol)oxy)-tris(2-pyridylmethyl)amine ligand (Cu-tmpa-O(CH2)4SH) anchored to a gold surface has been investigated. To enable covalent attachment of the complex to the gold surface, a heteromolecular self-assembled monolayer (SAM) of butanethiol and a thiol-substituted tmpa ligand was used. Subsequent formation of the immobilized copper complex by cyclic voltammetry in the presence of Cu(OTf)2 resulted in the formation of the anchored Cu-tmpa-O(CH2)4SH system which, according to scanning electron microscopy and X-ray diffraction, did not contain any accumulated copper nanoparticles or crystalline copper material. Electrochemical investigation of the heterogenized system barely showed any redox activity and lacked the typical CuII/I redox couple in contrast to the homogeneous complex in solution. The difference between the heterogenized system and the homogeneous complex was confirmed by X-ray photoelectron spectroscopy; the XPS spectrum did not show any satellite features of a CuII species but instead showed the presence of a CuI ion in a ∼2:3 ratio to nitrogen and a ∼2:7 ratio to sulfur. The +I oxidation state of the copper species was confirmed by the edge position in the X-ray absorption near-edge structure (XANES) region of the X-ray absorption spectrum. These results show that upon immobilization of Cu-tmpa-O(CH2)4SH, the resulting structure is not identical to the homogeneous CuII-tmpa complex. Upon anchoring, a novel CuI species is formed instead. This illustrates the importance of a thorough characterization of heterogenized molecular systems before drawing any conclusions regarding the structure-function relationships.

7.
Angew Chem Int Ed Engl ; 58(37): 12974-12978, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31339205

RESUMEN

Catalytic pathways for the reduction of dioxygen can either lead to the formation of water or peroxide as the reaction product. We demonstrate that the electrocatalytic reduction of O2 by the pyridylalkylamine copper complex [Cu(tmpa)(L)]2+ in a neutral aqueous solution follows a stepwise 4 e- /4 H+ pathway, in which H2 O2 is formed as a detectable intermediate and subsequently reduced to H2 O in two separate catalytic reactions. These homogeneous catalytic reactions are shown to be first order in catalyst. Coordination of O2 to CuI was found to be the rate-determining step in the formation of the peroxide intermediate. Furthermore, electrochemical studies of the reaction kinetics revealed a high turnover frequency of 1.5×105  s-1 , the highest reported for any molecular copper catalyst.

8.
Phys Chem Chem Phys ; 20(29): 19625-19634, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30010166

RESUMEN

Dinuclear CuII complexes bearing two 3,5-diamino-1,2,4-triazole (DAT) ligands have gained considerable attention as a potential model system for laccase due to their low overpotential for the oxygen reduction reaction (ORR). In this study, the active species for the ORR was investigated. The water soluble dinuclear copper complex (Cu(DAT)) was obtained by mixing a 1 : 1 ratio of Cu(OTf)2 and DAT in water. The electron paramagnetic resonance (EPR) spectrum of Cu(DAT) showed a broad axial signal with a g factor of 2.16 as well as a low intensity Ms = ±2 absorption characteristic of the Cu2(µ-DAT)2 moiety. Monitoring the typical 380 nm peak with UV-Vis spectroscopy revealed that the Cu2(µ-DAT)2 core is extremely sensitive to changes in pH, copper to ligand ratios and the presence of anions. Electrochemical quartz crystal microbalance experiments displayed a large decrease in frequency below 0.5 V versus the reversible hydrogen electrode (RHE) in a Cu(DAT) solution implying the formation of deposition. Rotating ring disk electrode experiments showed that this deposition is an active ORR catalyst which reduces O2 all the way to water at pH 5. The activity increased significantly in the course of time. X-ray photoelectron spectroscopy was utilized to analyze the composition of the deposition. Significant shifts in the Cu 2p3/2 and N 1s spectra were observed with respect to Cu(DAT). After ORR catalysis at pH 5, mostly CuI and/or Cu0 species are present and the deposition corresponds to previously reported electrodepositions of copper. This leads us to conclude that the active species is of a heterogeneous nature and lacks any structural similarity with laccase.

9.
Phys Chem Chem Phys ; 18(16): 10931-40, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27040354

RESUMEN

When exposed to a potential exceeding 1.5 V versus RHE for several minutes the molecular iridium bishydroxide complex bearing a pentamethylcyclopentadienyl and a N-dimethylimidazolin-2-ylidene ligand spontaneously adsorbs onto the surface of glassy carbon and gold electrodes. Simultaneously with the adsorption of the material on the electrode, the evolution of dioxygen is detected and modifications of the catalyst structure are observed. XPS and XAS studies reveal that the species present at the electrode interface is best described as a partly oxidized molecular species rather than the formation of large aggregates of iridium oxide. These findings are in line with the unique kinetic profile of the parent complex in the water oxidation reaction.

10.
Chem Soc Rev ; 43(15): 5183-91, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24802308

RESUMEN

Ammonia is an important nutrient for the growth of plants. In industry, ammonia is produced by the energy expensive Haber-Bosch process where dihydrogen and dinitrogen form ammonia at a very high pressure and temperature. In principle one could also reduce dinitrogen upon addition of protons and electrons similar to the mechanism of ammonia production by nitrogenases. Recently, major breakthroughs have taken place in our understanding of biological fixation of dinitrogen, of molecular model systems that can reduce dinitrogen, and in the electrochemical reduction of dinitrogen at heterogeneous surfaces. Yet for efficient reduction of dinitrogen with protons and electrons major hurdles still have to be overcome. In this tutorial review we give an overview of the different catalytic systems, highlight the recent breakthroughs, pinpoint common grounds and discuss the bottlenecks and challenges in catalytic reduction of dinitrogen.


Asunto(s)
Electrones , Nitrógeno/química , Oxidación-Reducción , Protones , Amoníaco/química , Electroquímica
11.
J Am Chem Soc ; 136(29): 10432-9, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24977640

RESUMEN

We present a systematic electrochemical and spectroelectrochemical study of the catalytic activity for water oxidation of an iridium-N-dimethylimidazolin-2-ylidene (Ir-NHC-Me2) complex adsorbed on a polycrystalline gold electrode. The work aims to understand the effect of the electrolyte properties (anions and acidity) on the activity of the molecular catalyst and check its stability toward decomposition. Our results show that the iridium complex displays a very strong dependence on the electrolyte properties such that large enhancements in catalytic activity may be obtained by adequately choosing pH and anions in the electrolyte. The stability of the adsorbed compound was investigated in situ by Surface Enhanced Raman Spectroscopy and Online Electrochemical Mass Spectrometry showing that the catalyst exhibits good stability under anodic conditions, with no observable evidence for the decomposition to iridium oxide.

12.
Chemistry ; 20(18): 5358-68, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24644093

RESUMEN

Catalytic water oxidation at Ir(OH)(+) (Ir = IrCp*(Me2NHC), where Cp* = pentamethylcyclopentadienyl and Me2NHC = N,N'-dimethylimidazolin-2-ylidene) can occur through various competing channels. A potential-energy surface showing these various multichannel reaction pathways provides a picture of how their importance can be influenced by changes in the oxidant potential. In the most favourable calculated mechanism, water oxidation occurs via a pathway that includes four sequential oxidation steps, prior to formation of the O-O bond. The first three oxidation steps are exothermic upon treatment with cerium ammonium nitrate and lead to formation of Ir(V) (=O)(O(·))(+), which is calculated to be the most stabile species under these conditions, whereas the fourth oxidation step is the potential-energy-determining step. O-O bond formation takes place by coupling of the two oxo ligands along a direct pathway in the rate-limiting step. Dissociation of dioxygen occurs in two sequential steps, regenerating the starting material Ir(OH)(+). The calculated mechanism fits well with the experimentally observed rate law: v = kobs[Ir][oxidant]. The calculated effective barrier of 24.6 kcal mol(-1) fits well with the observed turnover frequency of 0.88 s(-1). Under strongly oxidative conditions, O-O bond formation after four sequential oxidation steps is the preferred pathway, whereas under milder conditions O-O bond formation after three sequential oxidation steps becomes competitive.

13.
ChemSusChem ; 16(20): e202300392, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37326580

RESUMEN

Electrocatalysis is to play a key role in the transition towards a sustainable chemical and energy industry and active, stable and selective redox catalysts are much needed. Porous structures such as metal organic frameworks (MOFs) are interesting materials as these may influence selectivity of chemical reactions through confinement effects. In this work, the oxygen reduction catalyst Cu-tmpa was incorporated into the NU1000 MOF. Confinement of the catalyst within NU1000 steers the selectivity of the oxygen reduction reaction (ORR) towards water rather than peroxide. This is attributed to retention of the obligatory H2 O2 intermediate in close proximity to the catalytic center. Moreover, the resulting NU1000|Cu-tmpa MOF shows an excellent activity and stability in prolonged electrochemical studies, illustrating the potential of this approach.

14.
ACS Catal ; 13(15): 10094-10103, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37560187

RESUMEN

Mononuclear copper complexes relevant to the active site of copper nitrite reductases (CuNiRs) are known to be catalytically active for the reduction of nitrite. Yet, their catalytic mechanism has thus far not been resolved. Here, we provide a complete description of the electrocatalytic nitrite reduction mechanism of a bio-inspired CuNiR catalyst Cu(tmpa) (tmpa = tris(2-pyridylmethyl)amine) in aqueous solution. Through a combination of electrochemical studies, reaction kinetics, and density functional theory (DFT) computations, we show that the protonation steps take place in a stepwise manner and are decoupled from electron transfer. The rate-determining step is a general acid-catalyzed protonation of a copper-ligated nitrous acid (HNO2) species. In view of the growing urge to convert nitrogen-containing compounds, this work provides principal reaction parameters for efficient electrochemical nitrite reduction. This contributes to the investigation and development of nitrite reduction catalysts, which is crucial to restore the biogeochemical nitrogen cycle.

15.
ChemCatChem ; 15(1): e202200878, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37082113

RESUMEN

Artificial redox catalysts are typically limited by unfavorable scaling relations of reaction intermediates leading to a significant overpotential in multi-electron redox reactions such as for example the oxygen reduction reaction (ORR). The multicopper oxidase laccase is able to catalyze the ORR in nature. In particular the high-potential variants show a remarkably low overpotential for the ORR and apparently do not suffer from such unfavorable scaling relations. Although laccases are intensively studied, it is presently unknown why the overpotential for ORR is so low and a clear description regarding the thermodynamics of the catalytic cycle and the underlying design principles is lacking. In order to understand the laccase catalyzed ORR from an electrochemical perspective, elucidation of the free energy scheme would be of high value. This article reviews the energetics of the proposed laccase catalyzed ORR mechanisms based on experimental and computational studies. However, there are still remaining challenges to overcome to elucidate the free energy scheme of laccase. Obtaining thermodynamic data on intermediates is hard or even impossible with analytical techniques. On the other hand, several computational studies have been performed with significantly different parameters and conditions, thus making a direct comparison difficult. For these reasons, a consensus on a clear free energy scheme is still lacking. We anticipate that ultimately conquering these challenges will result in a better understanding of laccase catalyzed ORR and will allow for the design of low overpotential redox catalysts.

16.
ACS Catal ; 13(8): 5712-5722, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37123598

RESUMEN

Understanding how multicopper oxidases (MCOs) reduce oxygen in the trinuclear copper cluster (TNC) is of great importance for development of catalysts for the oxygen reduction reaction (ORR). Herein, we report a mechanistic investigation into the ORR activity of the dinuclear copper complex [Cu2L(µ-OH)]3+ (L = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine). This complex is inspired by the dinuclear T3 site found in the MCO active site and confines the Cu centers in a rigid scaffold. We show that the electrochemical reduction of [Cu2L(µ-OH)]3+ follows a proton-coupled electron transfer pathway and requires a larger overpotential due to the presence of the Cu-OH-Cu motif. In addition, we provide evidence that metal-metal cooperativity takes place during catalysis that is facilitated by the constraints of the rigid ligand framework, by identification of key intermediates along the catalytic cycle of [Cu2L(µ-OH)]3+ . Electrochemical studies show that the mechanisms of the ORR and hydrogen peroxide reduction reaction found for [Cu2L(µ-OH)]3+ differ from the ones found for analogous mononuclear copper catalysts. In addition, the metal-metal cooperativity results in an improved selectivity for the four-electron ORR of more than 70% because reaction intermediates can be stabilized better between both copper centers. Overall, the mechanism of the [Cu2L(µ-OH)]3+ -catalyzed ORR in this work contributes to the understanding of how the cooperative function of multiple metals in close proximity can affect ORR activity and selectivity.

17.
Angew Chem Int Ed Engl ; 51(39): 9740-7, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22936641

RESUMEN

Recently, several mononuclear water oxidation catalysts have been reported, a breakthrough considering the dogma that at least two metal sites were required to oxidize water efficiently. In this Review various mononuclear catalysts which have been reported in the last five years are reviewed, as well as their implementation in prototype devices that allow dioxygen formation to be coupled to dihydrogen production will be discussed.

18.
ChemElectroChem ; 9(3): e202101692, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35911791

RESUMEN

H2O2 is a bulk chemical used as "green" alternative in a variety of applications, but has an energy and waste intensive production method. The electrochemical O2 reduction to H2O2 is viable alternative with examples of the direct production of up to 20% H2O2 solutions. In that respect, we found that the dinuclear complex Cu2(btmpa) (6,6'-bis[[bis(2-pyridylmethyl)amino]methyl]-2,2'-bipyridine) reduces O2 to H2O2 with a selectivity up to 90 % according to single linear sweep rotating ring disk electrode measurements. Microbalance experiments showed that complex reduction leads to surface adsorption thereby increasing the catalytic current. More importantly, we kept a high Faradaic efficiency for H2O2 between 60 and 70 % over the course of 2 h of amperometry by introducing high potential intervals to strip deposited copper (depCu). This is the first example of extensive studies into the long term electrochemical O2 to H2O2 reduction by a molecular complex which allowed to retain the high intrinsic selectivity of Cu2(btmpa) towards H2O2 production leading to relevant levels of H2O2.

19.
ACS Catal ; 12(8): 4597-4607, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35465245

RESUMEN

The homogeneity of molecular Co-based water oxidation catalysts (WOCs) has been a subject of debate over the last 10 years as assumed various homogeneous Co-based WOCs were found to actually form CoO x under operating conditions. The homogeneity of the Co(HL) (HL = N,N-bis(2,2'-bipyrid-6-yl)amine) system was investigated with cyclic voltammetry, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy. The obtained experimental results were compared with heterogeneous CoO x . Although it is shown that Co(HL) interacts with the electrode during electrocatalysis, the formation of CoO x was not observed. Instead, a molecular deposit of Co(HL) was found to be formed on the electrode surface. This study shows that deposition of catalytic material is not necessarily linked to the decomposition of homogeneous cobalt-based water oxidation catalysts.

20.
ChemElectroChem ; 9(3): e202101365, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35911790

RESUMEN

Upon the electrochemical reduction of an in situ generated 5-diazo-1,10-phenanthroline ion, phenanthroline was covalently attached to a gold electrode. The grafted molecules act as a ligand when brought in contact with a copper-containing electrolyte solution. As the ligands are limited in spatial movement, the exclusive formation of the active species with only one phenanthroline ligand coordinated was expected. The in situ generated complexes have been investigated for activity in the oxygen reduction reaction, for which an overpotential of 800 mV is observed. During catalysis, initially a thick copper layer is formed on top of an organic layer that is still present on the gold surface. Upon deterioration of the organic layer underneath the copper over time, the amount of copper on the electrode and thereby the electrocatalytic activity decreases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA