Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(5): 1348-1361.e22, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636128

RESUMEN

Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.


Asunto(s)
Aterosclerosis/patología , Hematopoyesis Clonal , Células Madre Hematopoyéticas/patología , Envejecimiento/patología , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Médula Ósea/metabolismo , Proliferación Celular , Evolución Clonal , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Privación de Sueño/patología
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468628

RESUMEN

The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.


Asunto(s)
Isópteros/fisiología , Comportamiento de Nidificación , Animales , Modelos Teóricos , Tomografía Computarizada por Rayos X
3.
Proc Natl Acad Sci U S A ; 116(9): 3379-3384, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808734

RESUMEN

Several species of millimetric-sized termites across Africa, Asia, Australia, and South America collectively construct large, meter-sized, porous mound structures that serve to regulate mound temperature, humidity, and gas concentrations. These mounds display varied yet distinctive morphologies that range widely in size and shape. To explain this morphological diversity, we introduce a mathematical model that couples environmental physics to insect behavior: The advection and diffusion of heat and pheromones through a porous medium are modified by the mound geometry and, in turn, modify that geometry through a minimal characterization of termite behavior. Our model captures the range of naturally observed mound shapes in terms of a minimal set of dimensionless parameters and makes testable hypotheses for the response of mound morphology to external temperature oscillations and internal odors. Our approach also suggests mechanisms by which evolutionary changes in odor production rate and construction behavior coupled to simple physical laws can alter the characteristic mound morphology of termites.


Asunto(s)
Conducta Animal/fisiología , Ecosistema , Isópteros/fisiología , Morfogénesis/fisiología , África , Animales , Asia , Australia , Feromonas/metabolismo , América del Sur , Temperatura
4.
Proc Natl Acad Sci U S A ; 116(28): 14129-14137, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239334

RESUMEN

During metastasis, only a fraction of genetic diversity in a primary tumor is passed on to metastases. We calculate this fraction of transferred diversity as a function of the seeding rate between tumors. At one extreme, if a metastasis is seeded by a single cell, then it inherits only the somatic mutations present in the founding cell, so that none of the diversity in the primary tumor is transmitted to the metastasis. In contrast, if a metastasis is seeded by multiple cells, then some genetic diversity in the primary tumor can be transmitted. We study a multitype branching process of metastasis growth that originates from a single cell but over time receives additional cells. We derive a surprisingly simple formula that relates the expected diversity of a metastasis to the diversity in the pool of seeding cells. We calculate the probability that a metastasis is polyclonal. We apply our framework to published datasets for which polyclonality has been previously reported, analyzing 68 ovarian cancer samples, 31 breast cancer samples, and 8 colorectal cancer samples from 15 patients. For these clonally diverse metastases, under typical metastasis growth conditions, we find that 10 to 150 cells seeded each metastasis and left surviving lineages between initial formation and clinical detection.


Asunto(s)
Carcinogénesis/genética , Evolución Clonal/genética , Heterogeneidad Genética , Variación Genética/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Simulación por Computador , Femenino , Humanos , Masculino , Modelos Teóricos , Mutación/genética , Metástasis de la Neoplasia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
5.
Dev Dyn ; 248(11): 1129-1143, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31348570

RESUMEN

BACKGROUND: The neotropical leaf-nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes. RESULTS: In this study, we use three-dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis. CONCLUSION: These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists.


Asunto(s)
Evolución Biológica , Quirópteros , Cráneo , Animales , Quirópteros/anatomía & histología , Quirópteros/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Especificidad de la Especie
6.
Cancer Discov ; 10(6): 792-805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32193223

RESUMEN

Surgery is the only curative option for stage I/II pancreatic cancer; nonetheless, most patients will experience a recurrence after surgery and die of their disease. To identify novel opportunities for management of recurrent pancreatic cancer, we performed whole-exome or targeted sequencing of 10 resected primary cancers and matched intrapancreatic recurrences or distant metastases. We identified that recurrent disease after adjuvant or first-line platinum therapy corresponds to an increased mutational burden. Recurrent disease is enriched for genetic alterations predicted to activate MAPK/ERK and PI3K-AKT signaling and develops from a monophyletic or polyphyletic origin. Treatment-induced genetic bottlenecks lead to a modified genetic landscape and subclonal heterogeneity for driver gene alterations in part due to intermetastatic seeding. In 1 patient what was believed to be recurrent disease was an independent (second) primary tumor. These findings suggest routine post-treatment sampling may have value in the management of recurrent pancreatic cancer. SIGNIFICANCE: The biological features or clinical vulnerabilities of recurrent pancreatic cancer after pancreaticoduodenectomy are unknown. Using whole-exome sequencing we find that recurrent disease has a distinct genomic landscape, intermetastatic genetic heterogeneity, diverse clonal origins, and higher mutational burden than found for treatment-naïve disease.See related commentary by Bednar and Pasca di Magliano, p. 762.This article is highlighted in the In This Issue feature, p. 747.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Metástasis de la Neoplasia/genética , Recurrencia Local de Neoplasia/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/secundario , Evolución Molecular , Humanos , Recurrencia Local de Neoplasia/patología , Neoplasias Pancreáticas/patología , Secuenciación del Exoma
7.
Science ; 361(6406): 1033-1037, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30190408

RESUMEN

Metastases are responsible for the majority of cancer-related deaths. Although genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment-naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients, a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Thus, single biopsies capture most of the functionally important mutations in metastases and therefore provide essential information for therapeutic decision-making.


Asunto(s)
Heterogeneidad Genética , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Humanos , Modelos Teóricos , Mutación , Metástasis de la Neoplasia/patología , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA