Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 711: 149858, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621345

RESUMEN

Systemic transplantation of mesenchymal stem cells (MSCs) and conditioned medium derived from MSCs have been reported to recover bone loss in animal models of osteoporosis; however, the underlying mechanisms remain unclear. We recently reported that extracellular vesicles released from human mesenchymal stem cells (hMSCs) prevent senescence of stem cells in bisphosphonate-related osteonecrosis of the jaw model. In this study, we aimed to compare the effects of conditioned medium (hMSCs-CM) from early and late passage hMSCs on cellular senescence and to verify the benefits of CM from early passage hMSCs in mitigating the progression of osteoporosis through the prevention of cellular senescence. We investigated the distinct endocrine effects of early (P5) and late (P17) passage hMSCs in vitro, as well as the preventive benefits of early passage hMSCs-CM in osteoporosis model triggered by ovariectomy. Our results indicate that long-term cultured hMSCs contributed to the progression of inflammatory transcriptional programs in P5 hMSCs, ultimately impairing their functionality and enhancing senescence-related characteristics. Conversely, early passage hMSCs reversed these alterations. Moreover, early passage hMSCs-CM infused intravenously in a postmenopausal osteoporosis mouse model suppressed bone degeneration and prevented osteoporosis by reducing ovariectomy-induced senescence in bone marrow MSCs and reducing the expression of senescence-associated secretory phenotype-related cytokines. Our findings highlight the high translational value of early passage hMSCs-CM in antiaging intervention and osteoporosis prevention.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Osteoporosis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Animales , Medios de Cultivo Condicionados/farmacología , Osteoporosis/patología , Osteoporosis/metabolismo , Femenino , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ovariectomía
2.
Calcif Tissue Int ; 115(2): 185-195, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809297

RESUMEN

Medication-related osteonecrosis of the jaw is a serious disease occurring in patients with cancer and osteoporosis, who are undergoing treatment with antiresorptive agents (ARAs) such as bisphosphonate (BP) or denosumab, an antibody targeting receptor activator of NF-κB ligand. Recently, stem cell-based therapy has been shown to be effective in preventing the development of bisphosphonate-related osteonecrosis of the jaw. However, studies on denosumab-related osteonecrosis of the jaw (DRONJ) remain limited. Here, the efficacy of treatment with dental pulp stem cell conditioned media (DPSC-CM) in preventing DRONJ in a murine model was evaluated. Local administration of DPSC-CM into the extraction socket of a mouse with DRONJ decreased the number of empty osteocyte lacunae and the prevalence of ONJ. In tissues surrounding the extraction sockets in the DPSC-CM-treated group, the expression of inflammatory cytokines was attenuated and that of osteogenesis-related molecules was enhanced compared to that in the control group. Further, the expression of Wnt signaling molecules, which had been suppressed, was improved. These findings collectively suggest that DPSC-CM prevents ONJ development in a murine DRONJ model.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Denosumab , Pulpa Dental , Ligando RANK , Células Madre , Animales , Pulpa Dental/efectos de los fármacos , Células Madre/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Ratones , Denosumab/farmacología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Ligando RANK/metabolismo , Modelos Animales de Enfermedad , Masculino , Humanos , Osteogénesis/efectos de los fármacos
3.
Cytotherapy ; 25(9): 946-955, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354151

RESUMEN

BACKGROUND AIMS: While distraction osteogenesis (DO) achieves substantial bone regeneration, prolonged fixation may lead to infections. Existing stem cell and physical therapies have limitations, requiring the development of novel therapeutic approaches. Here, we evaluated high-mobility group box 1 (HMGB1) as a novel therapeutic target for DO treatment. METHODS: Micro-computed tomography (Micro-CT) analysis and histological staining of samples obtained from tibial DO model mice was performed. Transwell migration, wound healing, and proliferation assays were also performed on cultured human mesenchymal stem cells (hMSCs) and human umbilival vein endothelial cells (HUVECs). Tube formation assay was performed on HUVECs, whereas osteogenic differentiation assay was performed on hMSCs. RESULTS: Micro-CT analysis and histological staining of mouse samples revealed that HMGB1 promotes bone regeneration during DO via the recruitment of PDGFRα and Sca-1 positve (PαS+) cells and endothelial progenitor cells. Furthermore, HMGB1 accelerated angiogenesis during DO, promoted the migration and osteogenic differentiation of hMSCs as well as the proliferation, migration and angiogenesis of HUVECs in vitro. CONCLUSIONS: Our findings suggest that HMGB1 has a positive influence on endogenous stem/progenitor cells, representing a novel therapeutic target for the acceleration of DO-driven bone regeneration.


Asunto(s)
Proteína HMGB1 , Células Madre Mesenquimatosas , Osteogénesis por Distracción , Humanos , Ratones , Animales , Osteogénesis , Osteogénesis por Distracción/métodos , Microtomografía por Rayos X , Cicatrización de Heridas , Diferenciación Celular , Regeneración Ósea , Células Madre , Células Endoteliales de la Vena Umbilical Humana , Células Cultivadas
4.
J Oral Pathol Med ; 52(8): 718-726, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37317871

RESUMEN

BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand activates apoptotic pathways and could potentially be used in anticancer treatments. However, oral squamous cell carcinoma cells are known to be resistant to tumor necrosis factor-related apoptosis-inducing ligand-induced cell death. It has been previously reported that hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in other cancers. As such, we evaluated whether hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in a tumor necrosis factor-related apoptosis-inducing ligand-resistant oral squamous cell carcinoma cell line. METHODS: The oral squamous cell carcinoma cell line HSC3 was cultured and divided into hyperthermia and control groups. We investigated the antitumor effects of recombinant human tumor necrosis factor-related apoptosis-inducing ligand using cell proliferation and apoptosis assays. Additionally, we measured death receptor 4 and 5 levels, and determined death receptor ubiquitination status, as well as E3 ubiquitin ligase targeting of death receptor in both hyperthermia and control groups before recombinant human tumor necrosis factor-related apoptosis-inducing ligand administration. RESULTS: Treatment with recombinant human tumor necrosis factor-related apoptosis-inducing ligand produced greater inhibitory effects in the hyperthermia group than in the control group. Moreover, death receptor protein expression in the hyperthermia group was upregulated on the cell surface (and overall), although death receptor mRNA was downregulated. The half-life of death receptor was several hours longer in the hyperthermia group; concomitantly, E3 ubiquitin ligase expression and death receptor ubiquitination were downregulated in this group. CONCLUSION: Our findings suggested that hyperthermia enhances apoptotic signaling by tumor necrosis factor-related apoptosis-inducing ligand via the suppression of death receptor ubiquitination, which upregulates death receptor expression. These data suggest that the combination of hyperthermia and tumor necrosis factor-related apoptosis-inducing ligand has implications in developing a novel treatment strategy for oral squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Hipertermia Inducida , Neoplasias de la Boca , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Ligandos , Neoplasias de la Boca/terapia , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas
5.
Oral Dis ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047766

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of plasma-activated Ringer's lactate solution (PAL) on oral squamous cell carcinoma (OSCC) cells and carcinogenic processes with a particular focus on iron and collagenous matrix formation. MATERIALS AND METHODS: We used three OSCC cell lines, one keratinocyte cell line, and two fibroblast lines, and cell viability assays, immunoblotting, flow cytometry, and transmission electron microscopy were performed to evaluate the effect and type of cell death. The effect of PAL treatment on lysyl oxidase (LOX) expression was investigated in vitro and in vivo. Tamoxifen-inducible Mob1a/b double-knockout mice were used for the in vivo experiment. RESULTS: PAL killed OSCC cells more effectively than the control nontumorous cells and suppressed cell migration and invasion. Ferroptosis occurred and the protein level of LOX was downregulated in cancer cells in vitro and in vivo. Additionally, PAL improved the survival rate of mice and suppressed collagenous matrix formation. CONCLUSIONS: We demonstrated that PAL specifically kills OSCC cells and that ferroptosis occurs in vitro and in vivo. Furthermore, PAL can prevent carcinogenesis and improve the survival rate of oral cancer, especially tongue cancer, by changing collagenous matrix formation via LOX suppression.

6.
J Oral Rehabil ; 49(10): 937-943, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35801370

RESUMEN

BACKGROUND: Exercise therapy is occasionally considered as an initial treatment for temporomandibular disorders. However, pain can be exacerbated during exercise therapy. OBJECTIVE: To investigate the immediate curative effects of exercise therapy in patients with masticatory muscle myalgia. METHODS: Fifty-nine patients with masticatory muscle myalgia were included. Therapists performed exercise therapy (stretched the painful masseter and/or cervical muscles along the direction of muscle contraction) in 10 rounds of traction, each lasting 10 s. The patient's pain-free maximum mouth opening distance and degree of pain (VAS value) before and immediately after exercise therapy were compared using the Wilcoxon signed-rank test. The Mann-Whitney U test was used for the subgroup comparisons. RESULTS: Mouth opening increased from 41 (IQR 38-43) to 46 (IQR 43-48) mm and pain alleviation from 48 (IQR 31-56) to 21 (IQR 10-56) immediately following exercise therapy (p < .001 for both). None of the patients experienced pain exacerbation or reduction in mouth opening post-exercise. No difference in mouth opening distance changes according to sex, painful side, painful site and therapist were observed (p > .05 for all). Pain reduction was greater in patients with unilateral pain (26, IQR 12-39) than those with bilateral (13, IQR 5-25) (p = .019). There were no differences in the change in the degree of pain according to sex, painful site and therapist (p > .05 for all). CONCLUSION: Exercise therapy immediately enlarged the mouth opening distance and reduced myalgia; therefore, it could be helpful in managing masticatory muscle myalgia.


Asunto(s)
Mialgia , Trastornos de la Articulación Temporomandibular , Terapia por Ejercicio , Humanos , Músculo Masetero , Músculos Masticadores , Mialgia/terapia , Trastornos de la Articulación Temporomandibular/terapia
7.
J Clin Biochem Nutr ; 71(2): 129-135, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36213787

RESUMEN

COVID-19 is pandemic since 2020 and further information is necessary on the risk factors associated with the infection of SARS-CoV-2. As an entry mechanism, SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as receptor and transmembrane serine protease 2 (TMPRSS2) to activate fusion with host plasma membrane. Because dysgeusia is an early symptom of COVID-19, we here studied the expression of ACE2 and TMPRSS2 in the tongue and the associated tissues of mice and humans with immunohistochemistry and immunoblot analysis. ACE2 expression was low in the human tongue but was observed in the squamous epithelium, perineurium, arterial wall, salivary glands as well as taste buds. In contrast, mice showed high expression. In sharp contrast, TMPRSS2 expression was high in all the cells mentioned above in humans but relatively low in mice except for salivary glands. We then performed semi-quantitation of immunohistochemistry data of human ACE2 and TMPRSS2 and analyzed for age, sex, alcohol intake, and smoking habit with logistic regression analysis. We found that alcohol intake and female gender were the significant risk factors for increasing TMPRSS2 expression. In conclusion, TMPRSS2 is an important factor to be considered regarding SARS-CoV-2 entry and amplification in the oral cavity, which is promoted through drinking habit.

8.
Biochem Biophys Res Commun ; 575: 28-35, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34454177

RESUMEN

Small extracellular vesicles (sEV) facilitate signaling molecule transfer among cells. We examined the therapeutic efficacy of human dental pulp stem cell-derived sEV (hDPSC-sEV) against cellular senescence in an irradiated-submandibular gland mouse model. Seven-week-old mice were exposed to 25 Gy radiation and randomly assigned to control, phosphate-buffered saline (PBS), or hDPSC-sEV groups. At 18 days post-irradiation, saliva production was measured; histological and reverse transcription-quantitative PCR analyses of the submandibular glands were performed. The salivary flow rate did not differ significantly between the PBS and hDPSC-sEV groups. AQP5-expressing acinar cell numbers and AQP5 expression levels in the submandibular glands were higher in the hDPSC-sEV group than in the other groups. Furthermore, compared with non-irradiated mice, mice in the 25 Gy + PBS group showed a high senescence-associated-ß-galactosidase-positive cell number and upregulated senescence-related gene (p16INK4a, p19Arf, p21) and senescence-associated secretory phenotypic factor (MMP3, IL-6, PAI-1, NF-κB, and TGF-ß) expression, all of which were downregulated in the hDPSC-sEV group. Superoxide dismutase levels were lower in the PBS group than in the hDPSC-sEV group. In summary, hDPSC-sEV reduced inflammatory cytokine and senescence-related gene expression and reversed oxidative stress in submandibular cells, thereby preventing irradiation-induced cellular senescence. Based on these results, we hope to contribute to the development of innovative treatment methods for salivary gland dysfunction that develops after radiotherapy for head and neck cancer.


Asunto(s)
Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Inflamación/terapia , Células Madre/citología , Glándula Submandibular/efectos de la radiación , Animales , Senescencia Celular/efectos de la radiación , Pulpa Dental/metabolismo , Pulpa Dental/efectos de la radiación , Modelos Animales de Enfermedad , Vesículas Extracelulares/efectos de la radiación , Femenino , Rayos gamma , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/fisiología , Transducción de Señal , Células Madre/metabolismo , Células Madre/efectos de la radiación , Glándula Submandibular/efectos de los fármacos , Glándula Submandibular/patología
9.
Oral Dis ; 27(3): 439-447, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32688445

RESUMEN

OBJECTIVE: Owing to variations in the exterior appearances of noncancerous diseases in the oral cavity, clinicians may have difficulty diagnosing oral squamous cell carcinoma (OSCC). Tissue biopsy is confirmatory, but invasive. Therefore, reliable tumor markers for OSCC are required. Here, exosomal Alix (exoAlix) levels were measured in serum/salivary samples from patients with OSCC and healthy controls (HCs). METHODS: Fifty-seven patients admitted to Nagoya University Hospital from 2017 through 2019 were enrolled, and serum samples (OSCC, n = 29; HC, n = 21) and/or saliva samples (OSCC, n = 23; HC, n = 20) were collected. Exosomal fractions were isolated using ultracentrifugation. ExoAlix levels were measured using enzyme-linked immunosorbent assay. RESULTS: Serum/salivary exoAlix levels were significantly higher in patients with OSCC than in HCs. Receiver operating characteristic analyses revealed that sensitivity, specificity, positive predictive value, and area under the curve were 0.345, 1.000, 1.000, and 0.685, respectively, for serum exoAlix and 0.348, 1.000, 1.000, and 0.712, respectively, for salivary exoAlix at optimal cut-off values (serum, 0.205; saliva, 0.193). All tested OSCC tissue sections (n = 21) were immuno-reactive for Alix. CONCLUSION: Serum and salivary exoAlix were identified as potential diagnostic OSCC biomarkers. Serum exoAlix was suitable for prediction of therapeutic responses.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Biomarcadores de Tumor , Carcinoma de Células Escamosas/diagnóstico , Humanos , Neoplasias de la Boca/diagnóstico , Saliva , Carcinoma de Células Escamosas de Cabeza y Cuello
10.
Br J Cancer ; 122(6): 771-777, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32009131

RESUMEN

BACKGROUND: Anti-programmed cell death-1 (PD-1) antibodies can cause thyroid dysfunction. However, no predictive biomarkers enabling stratification of thyroid dysfunction risk have been identified. METHODS: A total of 209 patients treated with an anti-PD-1 antibody were evaluated for anti-thyroid antibodies at baseline and prospectively for thyroid function every 6 weeks for 24 weeks after treatment initiation, and then observed until the visits stopped. Thyroid ultrasonography was performed if the patient was positive for anti-thyroid antibodies at baseline. RESULTS: Of the 209 patients, 19 (9.1%) developed thyroid dysfunction (destructive thyroiditis or hypothyroidism). The cumulative incidence of thyroid dysfunction was significantly higher in patients who were positive vs. negative for anti-thyroid antibodies (15/44 [34.1%] vs. 4/165 [2.4%], p < 0.001). Forty-two patients positive for anti-thyroid antibodies at baseline were divided into two groups according to the presence of an irregular echo pattern. The cumulative incidence of thyroid dysfunction was significantly higher in those with an irregular vs. a regular echo pattern (13/23 [56.5%] vs. 1/19 [5.3%], p = 0.001). None of the patients developed thyroid dysfunction after the initial 24-week period. CONCLUSIONS: The risk of thyroid dysfunction induced by anti-PD-1 antibodies can be predicted by evaluation of anti-thyroid antibodies and the thyroid echo pattern at baseline. TRIAL REGISTRATION: UMIN000019024.


Asunto(s)
Receptor de Muerte Celular Programada 1/metabolismo , Glándula Tiroides/fisiopatología , Tiroiditis/inducido químicamente , Ultrasonografía/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
11.
Cytotherapy ; 22(10): 543-551, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32798177

RESUMEN

BACKGROUND AIMS: When cells are exposed to stresses such as mechanical stimuli, they release growth factors and adapt to the surrounding environment H ere, we demonstrated that mechanical stimulation during culture affects the production of osteogenic and angiogenic factors. METHODS: Human bone marrow derived mesenchymal stromal cells (hMSCs) and human periodontal ligament fibroblasts (HPLFs ) were cultured under cyclic stretch stimulation for 24 h. Collected of the cells and conditioned media (CM), the gene and protein expression levels of osteogenic and angiogenic factors were evaluated. CM was also evaluated for angiogenic activity and calc ification ability. In in vivo study, CM was administered to a mouse calvarial defect model and histologically and radiologically evaluated. RESULTS: Quantitative real time polymerase chain reaction results showed that the expression of bone morphogenetic pro tein 2, 4 (BMP 2, 4), vascular endothelial growth factor A (VEGF A), and platelet derived growth factor AA (PDGF AA) was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in each cell type. Enzyme linked immunosor bent assay results revealed that the expression of BMP 2,4, VEGF A was upregulated in the cyclic stretch group in comparison with the non stretch group in each cell type. Only HPLFs showed significant difference in PDGF AA expression between the cyclic str etch and the non stretch group. Tube formation assay and Alizarin Red S staining results showed that angiogenic activity and calcification ability of CM was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in eac h cell type. CM was administered to the mouse calvarial defect model. Histological and radiological examination showed that the bone healing was promoted by CM from the cyclic stretch culture group. Immunohistological staining revealed that CM from cyclic stretch group have greater angiogenic effect than CM from the non stretch group. CONCLUSIONS: These results indicate that osteogenesis was promoted by CM obtained under cyclic stretch stimulation through the increase of angiogenesis in the mouse calvarial defect model.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ligamento Periodontal/citología , Cráneo/patología , Estrés Mecánico , Cicatrización de Heridas/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 2/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Calcificación Fisiológica/genética , Diferenciación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos ICR , Neovascularización Fisiológica/genética , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
J Mater Sci Mater Med ; 31(8): 70, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32705350

RESUMEN

Guided bone regeneration (GBR) is an established treatment. However, the mechanisms of GBR are not fully understood. Recently, a GBR membrane was identified that acts as a passive barrier to regenerate bone via activation and migration of macrophages (Mps) and bone marrow stem cells (BMSCs). Atmospheric pressure plasma treatment of the titanium membrane (APP-Ti) activated macrophages. The purpose of this study was to analyze whether macrophages attached to an APP-Ti membrane affected differentiation of BMSCs in a GBR model. Human THP-1 macrophages (hMps) were cultured on non-treated Ti (N-Ti) and APP-Ti membrane. Macrophage polarization was analyzed by RT-PCR and immunocytochemistry. Secreted proteins from hMps on N-Ti and APP-Ti were detected by LC/MS/MS. hBMSCs were co-cultured with hMps on N-Ti or APP-Ti and analyzed by osteogenic differentiation, Alizarin red S staining, and alkaline phosphatase (ALP) activity. N-Ti and APP-Ti membrane were also implanted into bone defects of rat calvaria. hMps on APP-Ti were polarized M2-like macrophages. hMps on N-Ti secreted plasminogen activator inhibitor-1 and syndecan-2, but hMps on APP-Ti did not. hBMSCs co-cultured with hMps on APP-Ti increased cell migration and gene expression of osteogenic markers, but suppressed mineralization, while ALP activity was similar to that of hMps on N-Ti in vitro. The volume of newly formed bone was not significantly different between N-Ti and APP-Ti membrane in vivo. M2 polarized hMps on APP-Ti suppressed osteogenic induction of hBMSCs in vitro. The indirect role of hMps on APP-Ti in newly formed bone was limited.


Asunto(s)
Células de la Médula Ósea/citología , Regeneración Ósea , Regeneración Tisular Dirigida , Macrófagos/fisiología , Células Madre Mesenquimatosas/citología , Titanio , Animales , Presión Atmosférica , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Femenino , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Humanos , Ensayo de Materiales , Membranas Artificiales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Gases em Plasma/farmacología , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie/efectos de los fármacos , Células THP-1 , Titanio/química , Titanio/inmunología , Titanio/farmacología
13.
J Neuroinflammation ; 16(1): 82, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975169

RESUMEN

BACKGROUND: Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain. METHODS: mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography-tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity. RESULTS: GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain. CONCLUSIONS: Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain.


Asunto(s)
Microglía/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Receptores Lisofosfolípidos/metabolismo , Médula Espinal/patología , Análisis de Varianza , Animales , Proteínas de Unión al Calcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Factores Reguladores del Interferón/metabolismo , Lisofosfolípidos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Neuralgia/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Dimensión del Dolor , Umbral del Dolor/fisiología , Proteína Quinasa C/metabolismo , ARN Mensajero/metabolismo , Receptores Lisofosfolípidos/antagonistas & inhibidores , Receptores Lisofosfolípidos/genética , Factores de Tiempo
14.
BMC Oral Health ; 19(1): 69, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039763

RESUMEN

BACKGROUND: Maxillomandibular bone defects arise from maxillofacial injury or tumor/cyst removal. While the standard therapy for bone regeneration is transplantation with autologous bone or artificial bone, these therapies are still unsatisfactory. Autologous bone harvesting is invasive and occasionally absorbed at the implanted site. The artificial bone takes a long time to ossify and it often gets infected. Therefore, we have focused on regenerative therapy consisting of autologous bone marrow-derived mesenchymal cells (BM-MSCs), which decreases the burden on patients. Based on our previous research in patients with maxillomandibular bone defects or alveolar bone atrophy using a mixture of BM-MSCs, platelet-rich plasma (PRP), thrombin, and calcium, we confirmed the efficacy and acceptable safety profile of this treatment. In this investigator-initiated clinical study (the TEOM study), we intended to add ß-tricalcium phosphate (ß-TCP) owing to large defect with patients. The TEOM study aimed to evaluate the efficacy and safety of bone regeneration using mixtures of BM-MSCs in patients with bone defects resulting from maxillofacial injury, and tumor/cyst removal in the maxillomandibular region. METHODS: The TEOM study is an open-label, single-center, randomized controlled study involving a total of 83 segments by the Fédération Dentaire Internationale numbering system in maxillomandibular bone defects that comprise over 1/3 of the maxillomandibular area with a remaining bone height of ≤10 mm. The primary endpoint is rate of procedure sites with successful bone regeneration defined as a computed tomography (CT) value of more than 400 and a bone height of more than 10 mm. Our specific hypothesis is that the number of required regions was calculated assuming that the rate of procedure sites with successful bone regeneration is similar and the non-inferiority margin is 15.0%. DISCUSSION: The TEOM study is the first randomized controlled study of regenerative treatment using BM-MSCs for large maxillomandibular bone defects. We will evaluate the efficacy and safety in this study to provide an exploratory basis for the necessity of BM-MSCs for these patients. TRIAL REGISTRATION: This trial was registered at the University Hospital Medical information Network Clinical Trials Registry (UMIN-CTR Unique ID: UMIN000020398; Registration Date: Jan 15, 2016; URL: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000016543 ).


Asunto(s)
Regeneración Ósea , Enfermedades Mandibulares/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos , Médula Ósea , Células de la Médula Ósea/citología , Regeneración Ósea/fisiología , Humanos , Japón , Enfermedades Mandibulares/fisiopatología
15.
J Clin Biochem Nutr ; 65(1): 8-15, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31379408

RESUMEN

Oral cancer accounts for ~2% of all cancers worldwide, and therapeutic intervention is closely associated with quality of life. Here, we evaluated the effects of non-thermal plasma on oral squamous cell carcinoma cells with special reference to catalytic Fe(II). Non-thermal plasma exerted a specific killing effect on oral squamous cell carcinoma cells in comparison to fibroblasts. Furthermore, the effect was dependent on the amounts of catalytic Fe(II), present especially in lysosomes. After non-thermal plasma application, lipid peroxidation occurred and peroxides and mitochondrial superoxide were generated. Cancer cell death by non-thermal plasma was promoted dose-dependently by prior application of ferric ammonium citrate and prevented by desferrioxamine, suggesting the association of ferroptosis. Potential involvement of apoptosis was also observed with positive terminal deoxynucleaotidyl transferase-mediated dUTP nick end labeling and annexin V results. Non-thermal plasma exposure significantly suppressed the migratory, invasive and colony-forming abilities of squamous cell carcinoma cells. The oral cavity is easily observable; therefore, non-thermal plasma can be directly applied to the oral cavity to kill oral squamous cell carcinoma without damaging fibroblasts. In conclusion, non-thermal plasma treatment is a potential therapeutic option for oral cancer.

16.
Stem Cells ; 35(3): 641-653, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27862629

RESUMEN

Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.


Asunto(s)
Polaridad Celular , Quimiocina CCL2/metabolismo , Macrófagos/patología , Nervios Periféricos/patología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Niño , Nervio Facial/fisiopatología , Femenino , Ganglios Espinales/metabolismo , Humanos , Inflamación/patología , Macrófagos/metabolismo , Regeneración Nerviosa , Proyección Neuronal , Nervios Periféricos/fisiopatología , Ratas Sprague-Dawley , Recuperación de la Función , Células de Schwann , Transducción de Señal , Células Madre/metabolismo , Diente Primario/citología
17.
J Immunol ; 196(10): 4164-71, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27053763

RESUMEN

Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Medios de Cultivo Condicionados/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Macrófagos/inmunología , Células Madre Mesenquimatosas/fisiología , Microglía/inmunología , Esclerosis Múltiple/inmunología , Animales , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Diente Primario/fisiología , Diente Primario/cirugía
18.
Biochem Biophys Res Commun ; 484(1): 100-106, 2017 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-28104393

RESUMEN

Secretomes in the conditioned media from human mesenchymal stem cells (MSC-CM) were previously demonstrated to promote periodontal tissue regeneration. By mixing insulin-like growth factor-1, vascular endothelial growth factor-A, and transforming growth factor-ß1 which were included in MSC-CM, we made the cytokine cocktail (CC) mimicking MSC-CM, and then evaluated its efficacy on periodontal tissue regeneration. In vitro, CC promoted the migration of dog bone marrow-derived stem cells and periodontal ligament cells, and the tube formation of human umbilical vein endothelial cells. In vivo, class II furcation defects were surgically created at premolars in dogs. After 4 weeks of vinylpolysiloxane-induced inflammation, defects were filled with or without CC mixed in hydroxypropyl cellulose, or enamel matrix derivative (EMD). After 8 weeks, periodontal tissues were evaluated histologically and immunohistochemically. CC showed promotional effects on angiogenesis and formation of new bone and cementum. Osteogenesis by CC was greater than that by EMD and cementogenesis by CC was as well as that by EMD. CC may be promising for periodontal tissue regeneration.


Asunto(s)
Citocinas/fisiología , Células Madre Mesenquimatosas/fisiología , Periodoncio/fisiología , Animales , Medios de Cultivo Condicionados , Perros , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Regeneración
19.
Clin Oral Investig ; 21(6): 1979-1988, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27796573

RESUMEN

OBJECTIVES: The receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitors are novel clinically effective agents that inhibit osteoclast differentiation, function, and survival by binding to RANKL. Medication-related osteonecrosis of the jaw (MRONJ), caused as a result of treatment using denosumab, is a newly emerging type of bone necrosis, the exact pathogenesis of which is unknown. Several studies recently showed that the intravenous administration of mesenchymal stem cells (MSCs) improved the osteonecrosis of the jaw, and it was hypothesized that paracrine effects by secretomes from MSCs are the main constituent. Our aim was to investigate the effects of serum-free conditioned media from human MSCs (MSC-CM) and RANKL inhibitors on osteoclast differentiation. MATERIALS AND METHODS: Cytokines included in MSC-CM were identified using the cytokine array analysis. MSC-CM was added to the culture medium of rat osteoclast precursors containing RANKL inhibitor. Osteoclast differentiation assays, immunohistochemistry, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis, and pit formation assays were performed. RESULTS: MSC-CM included various cytokines such as the recruitment of cell osteogenesis angiogenesis and cell proliferation. MSC-CM promoted osteoclast differentiation and expression of master regulatory transcriptional factors for osteoclastogenesis. In addition, MSC-CM showed function maintenance in osteoclasts despite the presence of RANKL inhibitors. CONCLUSIONS: Our findings suggest that secretomes in MSC-CM were related to the regulation of osteoclast differentiation, which may reduce the effect of RANKL inhibitors. CLINICAL RELEVANCE: New combinations of drugs using factors included in MSC-CM have effective therapeutic modality for treating patients with MRONJ.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Animales , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunohistoquímica , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Implant Dent ; 26(4): 607-612, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28727618

RESUMEN

OBJECTIVE: This clinical study was undertaken to evaluate the safety of use of the secretome of bone marrow-derived mesenchymal stem cells (MSC-CM) for maxillary sinus floor elevation (SFE). MATERIALS AND METHODS: MSC-CM was prepared from conditioned medium from human bone marrow-derived MSCs. Six partially edentulous patients were enrolled in the study. MSC-CM was mixed with porous beta-tricalcium phosphate (ß-TCP) and implanted in 4 patients (experimental group), whereas only ß-TCP was implanted in the other 2 patients (control group). Six months after SFE, bone biopsies and histological assessments were performed. RESULTS: Bone formation was clinically confirmed in all cases. Although Hounsfield units in computed tomography images were not significantly different between the groups, histological analysis revealed a significant difference in newly formed bone area between the groups. In particular, bone volume in the center of the augmented area was significantly greater in the MSC-CM group. Newly formed bone consisted of lamellar bone in the MSC-CM group but woven bone in the ß-TCP group. CONCLUSION: The secretome of bone marrow-derived mesenchymal stem cells (MSC-CM) was used safely and has great osteogenic potential for regenerative medicine of bone.


Asunto(s)
Regeneración Ósea/fisiología , Medios de Cultivo Condicionados/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Elevación del Piso del Seno Maxilar , Biopsia , Fosfatos de Calcio/farmacología , Implantación Dental Endoósea/métodos , Implantes Dentales , Femenino , Humanos , Arcada Parcialmente Edéntula/cirugía , Masculino , Persona de Mediana Edad , Andamios del Tejido , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA