Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 33(6): 959-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20102540

RESUMEN

Photosynthetic leaf traits were determined for savanna and forest ecosystems in West Africa, spanning a large range in precipitation. Standardized major axis fits revealed important differences between our data and reported global relationships. Especially for sites in the drier areas, plants showed higher photosynthetic rates for a given N or P when compared with relationships from the global data set. The best multiple regression for the pooled data set estimated V(cmax) and J(max) from N(DW) and S. However, the best regression for different vegetation types varied, suggesting that the scaling of photosynthesis with leaf traits changed with vegetation types. A new model is presented representing independent constraints by N and P on photosynthesis, which can be evaluated with or without interactions with S. It assumes that limitation of photosynthesis will result from the least abundant nutrient, thereby being less sensitive to the allocation of the non-limiting nutrient to non-photosynthetic pools. The model predicts an optimum proportionality for N and P, which is distinct for V(cmax) and J(max) and inversely proportional to S. Initial tests showed the model to predict V(cmax) and J(max) successfully for other tropical forests characterized by a range of different foliar N and P concentrations.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/fisiología , Árboles/fisiología , África Occidental , Biomasa , Hojas de la Planta/metabolismo , Carácter Cuantitativo Heredable , Análisis de Regresión , Estaciones del Año
2.
Funct Plant Biol ; 42(1): 63-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480654

RESUMEN

Variations in leaf mass per unit area (Ma) and foliar concentrations of N, P, C, K, Mg and Ca were determined for 365 trees growing in 23 plots along a West African precipitation gradient ranging from 0.29 to 1.62m a-1. Contrary to previous studies, no marked increase in Ma with declining precipitation was observed, but savanna tree foliar [N] tended to be higher at the drier sites (mass basis). Generally, Ma was slightly higher and [N] slightly lower for forest vs savanna trees with most of this difference attributable to differences in soil chemistry. No systematic variations in [P], [Mg] and [Ca] with precipitation or between trees of forest vs savanna stands were observed. We did, however, find a marked increase in foliar [K] of savanna trees as precipitation declined, with savanna trees also having a significantly lower [K] than those of nearby forest. These differences were not related to differences in soil nutrient status and were accompanied by systematic changes in [C] of opposite sign. We suggest an important but as yet unidentified role for K in the adaption of savanna species to periods of limited water availability; with foliar [K] being also an important factor differentiating tree species adapted to forest vs savanna soils within the 'zone of transition' of Western Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA