RESUMEN
MOTIVATION: On-target gene knockdown, using siRNA, ideally results from binding fully complementary regions in mRNA transcripts to induce direct cleavage. Off-target siRNA gene knockdown can occur through several modes, one being a seed-mediated mechanism mimicking miRNA gene regulation. Seed-mediated off-target effects occur when the â¼8 nucleotides at the 5' end of the guide strand, called a seed region, bind the 3' untranslated regions of mRNA, causing reduced translation. Experiments using siRNA knockdown paired with RNA-seq can be used to detect siRNA sequences with off-target effects driven by the seed region. However, there are limited computational tools designed specifically for detecting siRNA off-target effects mediated by the seed region in differential gene expression experiments. RESULTS: SeedMatchR is an R package developed to provide users a single, unified resource for detecting and visualizing seed-mediated off-target effects of siRNA using RNA-seq experiments. SeedMatchR is designed to extend current differential expression analysis tools, such as DESeq2, by annotating results with predicted seed matches. Using publicly available data, we demonstrate the ability of SeedMatchR to detect cumulative changes in differential gene expression attributed to siRNA seed region activity. AVAILABILITY: SeedMatchR is available on CRAN. Documentation and example workflows are available through the SeedMatchR GitHub page at https://github.com/tacazares/SeedMatchR.
Asunto(s)
MicroARNs , ARN Interferente Pequeño/genética , RNA-Seq , MicroARNs/metabolismo , Nucleótidos , Regiones no Traducidas 3' , ARN Mensajero/metabolismo , Interferencia de ARNRESUMEN
BACKGROUND: Patients with underlying medical conditions are at increased risk for severe coronavirus disease 2019 (Covid-19). Whereas vaccine-derived immunity develops over time, neutralizing monoclonal-antibody treatment provides immediate, passive immunity and may limit disease progression and complications. METHODS: In this phase 3 trial, we randomly assigned, in a 1:1 ratio, a cohort of ambulatory patients with mild or moderate Covid-19 who were at high risk for progression to severe disease to receive a single intravenous infusion of either a neutralizing monoclonal-antibody combination agent (2800 mg of bamlanivimab and 2800 mg of etesevimab, administered together) or placebo within 3 days after a laboratory diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The primary outcome was the overall clinical status of the patients, defined as Covid-19-related hospitalization or death from any cause by day 29. RESULTS: A total of 1035 patients underwent randomization and received an infusion of bamlanivimab-etesevimab or placebo. The mean (±SD) age of the patients was 53.8±16.8 years, and 52.0% were adolescent girls or women. By day 29, a total of 11 of 518 patients (2.1%) in the bamlanivimab-etesevimab group had a Covid-19-related hospitalization or death from any cause, as compared with 36 of 517 patients (7.0%) in the placebo group (absolute risk difference, -4.8 percentage points; 95% confidence interval [CI], -7.4 to -2.3; relative risk difference, 70%; P<0.001). No deaths occurred in the bamlanivimab-etesevimab group; in the placebo group, 10 deaths occurred, 9 of which were designated by the trial investigators as Covid-19-related. At day 7, a greater reduction from baseline in the log viral load was observed among patients who received bamlanivimab plus etesevimab than among those who received placebo (difference from placebo in the change from baseline, -1.20; 95% CI, -1.46 to -0.94; P<0.001). CONCLUSIONS: Among high-risk ambulatory patients, bamlanivimab plus etesevimab led to a lower incidence of Covid-19-related hospitalization and death than did placebo and accelerated the decline in the SARS-CoV-2 viral load. (Funded by Eli Lilly; BLAZE-1 ClinicalTrials.gov number, NCT04427501.).
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , COVID-19/etnología , COVID-19/virología , Niño , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Infusiones Intravenosas , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Carga Viral/efectos de los fármacos , Adulto JovenRESUMEN
BACKGROUND: Based on interim analyses and modeling data, lower doses of bamlanivimab and etesevimab together (700/1400 mg) were investigated to determine optimal dose and expand availability of treatment. METHODS: This Phase 3 portion of the BLAZE-1 trial characterized the effect of bamlanivimab with etesevimab on overall patient clinical status and virologic outcomes in ambulatory patients ≥12 years old, with mild-to-moderate coronavirus disease 2019 (COVID-19), and ≥1 risk factor for progressing to severe COVID-19 and/or hospitalization. Bamlanivimab and etesevimab together (700/1400 mg) or placebo were infused intravenously within 3 days of patients' first positive COVID-19 test. RESULTS: In total, 769 patients were infused (median age [range]; 56.0 years [12, 93], 30.3% of patients ≥65 years of age and median duration of symptoms; 4 days). By day 29, 4/511 patients (0.8%) in the antibody treatment group had a COVID-19-related hospitalization or any-cause death, as compared with 15/258 patients (5.8%) in the placebo group (Δ[95% confidence interval {CI}]â =â -5.0 [-8.0, -2.1], Pâ <â .001). No deaths occurred in the bamlanivimab and etesevimab group compared with 4 deaths (all COVID-19-related) in the placebo group. Patients receiving antibody treatment had a greater mean reduction in viral load from baseline to Day 7 (Δ[95% CI]â =â -0.99 [-1.33, -.66], Pâ <â .0001) compared with those receiving placebo. Persistently high viral load at Day 7 correlated with COVID-19-related hospitalization or any-cause death by Day 29 in all BLAZE-1 cohorts investigated. CONCLUSIONS: These data support the use of bamlanivimab and etesevimab (700/1400 mg) for ambulatory patients at high risk for severe COVID-19. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants will require continued monitoring to determine the applicability of this treatment. CLINICAL TRIALS REGISTRATION: NCT04427501.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Niño , Humanos , Persona de Mediana Edad , Pronóstico , SARS-CoV-2 , Carga ViralRESUMEN
BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Biomarcadores , Expresión Génica , Humanos , Nasofaringe , SARS-CoV-2RESUMEN
BACKGROUND: Physicians treating patients with coronavirus disease 2019 (COVID-19) increasingly believe that the hyperinflammatory acute stage of COVID-19 results in a cytokine storm. The circulating biomarkers seen across the spectrum of COVID-19 have not been characterized compared with healthy controls, but such analyses are likely to yield insights into the pursuit of interventions that adequately reduce the burden of these cytokine storms. OBJECTIVE: To identify and characterize the host inflammatory response to severe acute respiratory syndrome coronavirus 2 infection, we assessed levels of proteins related to immune responses and cardiovascular disease in patients stratified as mild, moderate, and severe versus matched healthy controls. METHODS: Blood samples from adult patients hospitalized with COVID-19 were analyzed using high-throughput and ultrasensitive proteomic platforms and compared with age- and sex-matched healthy controls to provide insights into differential regulation of 185 markers. RESULTS: Results indicate a dominant hyperinflammatory milieu in the circulation and vascular endothelial damage markers within patients with COVID-19, and strong biomarker association with patient response as measured by Ordinal Scale. As patients progress, we observe statistically significant dysregulation of IFN-γ, IL-1RA, IL-6, IL-10, IL-19, monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, CXCL9, CXCL10, CXCL5, ENRAGE, and poly (ADP-ribose) polymerase 1. Furthermore, in a limited series of patients who were sampled frequently, confirming reliability and reproducibility of our assays, we demonstrate that intervention with baricitinib attenuates these circulating biomarkers associated with the cytokine storm. CONCLUSIONS: These wide-ranging circulating biomarkers show an association with increased disease severity and may help stratify patients and selection of therapeutic options. They also provide insights into mechanisms of severe acute respiratory syndrome coronavirus 2 pathogenesis and the host response.
Asunto(s)
COVID-19/sangre , Síndrome de Liberación de Citoquinas/sangre , Citocinas/sangre , Poli(ADP-Ribosa) Polimerasa-1/sangre , Proteómica , SARS-CoV-2/metabolismo , Adulto , Biomarcadores/sangre , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVES: Heterogeneity of SLE patients in clinical trials remains a challenge for developing new therapies. This study used a combinatorial analysis of four molecular biomarkers to define key sources of heterogeneity. METHODS: Combinations of IFN (high/low), anti-dsDNA (+/-) and C3 and C4 (low/normal) were used to subset n = 1747 patients from two randomized phase III trials. A dichotomous classification scheme defined SLE (+) as: IFN (high), anti-dsDNA (+), C3 (low) and/or C4 (low). SLE (-) required all of the following: IFN (low), anti-dsDNA (-), C3 (normal) and C4 (normal). Additional analyses subset the data further by IFN, anti-dsDNA and complement. RESULTS: The trials enrolled n = 2262 patients of which n = 1747 patients had data for IFN, anti-dsDNA, C3 and C4 at baseline. There were n = 247 patients in the SLE (-) population and n = 1500 patients in the SLE (+) population. The SLE (-) population had more mucocutaneous and musculoskeletal disease at baseline, while SLE (+) had more haematological, renal and vascular involvement. There was lower concomitant medication use in the SLE (-) population for corticosteroids and immunosuppressants, except for MTX. Time to severe flare was significantly longer in SLE (-) vs SLE (+) (P < 0.0001) and SRI-4 response rate was significantly lower in SLE (-) vs SLE (+) (P = 0.00016). The USA had more SLE (-) patients (22%) than Mexico/Central America/South America (10%), Europe (7%) and the rest of the world (5%). CONCLUSION: Combinatorial analysis of four molecular biomarkers revealed subsets of SLE patients that discriminated by disease manifestations, concomitant medication use, geography, time to severe flare and SRI-4 response. These data may be useful for designing clinical trials and identifying subsets of patients for analysis. Rheumatology key messages SLE patients from a P3 trial were categorized by IFN, anti-dsDNA, C3 and C4 status. Patients lacking molecular markers of SLE distinguished from biomarker positive patients on multiple clinical parameters. Biomarker negative patients have distinct disease characteristics that may impact clinical trial outcomes.
Asunto(s)
Anticuerpos Antinucleares/sangre , Complemento C3/metabolismo , Complemento C4/metabolismo , Interferones/sangre , Lupus Eritematoso Sistémico/diagnóstico , Humanos , Lupus Eritematoso Sistémico/sangre , FenotipoRESUMEN
Atopic dermatitis (AD) is a heterogeneous systemic inflammatory skin disease associated with dysregulated immune responses, barrier dysfunction and activated sensory nerves. To characterize circulating inflammatory profiles and underlying systemic disease heterogeneity within AD patients, blood samples from adult patients (N = 123) with moderate-to-severe AD in a phase 2 study of baricitinib (JAHG) were analysed. Baseline levels of 131 markers were evaluated using high-throughput and ultrasensitive proteomic platforms, patient clusters were generated based on these peripheral markers. We implemented a novel cluster reproducibility method to validate cluster outcomes within our study and used publicly available AD biomarker data set (73 markers, N = 58 patients) to validate our findings. Cluster reproducibility analysis demonstrated best consistency for 2 clusters by k-means, reproducibility of this clustering outcome was validated in an independent patient cohort. These unique JAHG patient subgroups either possessed elevated pro-inflammatory mediators, notably TNFß, MCP-3 and IL-13, among a variety of immune responses (high inflammatory) or lower levels of inflammatory biomarkers (low inflammatory). The high inflammatory subgroup was associated with greater baseline disease severity, demonstrated by greater EASI, SCORAD Index, Itch NRS and DLQI scores, compared with low inflammatory subgroup. African-American patients were predominantly associated with the high inflammatory subgroup and increased baseline disease severity. In patients with moderate-to-severe AD, heterogeneity was identified by the detection of 2 disease subgroups, differential clustering amongst ethnic groups and elevated pro-inflammatory mediators extending beyond traditional polarized immune responses. Therapeutic strategies targeting multiple pro-inflammatory cytokines may be needed to address this heterogeneity.
Asunto(s)
Azetidinas/uso terapéutico , Dermatitis Atópica/sangre , Dermatitis Atópica/tratamiento farmacológico , Purinas/uso terapéutico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Adulto , Biomarcadores/sangre , Dermatitis Atópica/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Importance: Coronavirus disease 2019 (COVID-19) continues to spread rapidly worldwide. Neutralizing antibodies are a potential treatment for COVID-19. Objective: To determine the effect of bamlanivimab monotherapy and combination therapy with bamlanivimab and etesevimab on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in mild to moderate COVID-19. Design, Setting, and Participants: The BLAZE-1 study is a randomized phase 2/3 trial at 49 US centers including ambulatory patients (N = 613) who tested positive for SARS-CoV-2 infection and had 1 or more mild to moderate symptoms. Patients who received bamlanivimab monotherapy or placebo were enrolled first (June 17-August 21, 2020) followed by patients who received bamlanivimab and etesevimab or placebo (August 22-September 3). These are the final analyses and represent findings through October 6, 2020. Interventions: Patients were randomized to receive a single infusion of bamlanivimab (700 mg [n = 101], 2800 mg [n = 107], or 7000 mg [n = 101]), the combination treatment (2800 mg of bamlanivimab and 2800 mg of etesevimab [n = 112]), or placebo (n = 156). Main Outcomes and Measures: The primary end point was change in SARS-CoV-2 log viral load at day 11 (±4 days). Nine prespecified secondary outcome measures were evaluated with comparisons between each treatment group and placebo, and included 3 other measures of viral load, 5 on symptoms, and 1 measure of clinical outcome (the proportion of patients with a COVID-19-related hospitalization, an emergency department [ED] visit, or death at day 29). Results: Among the 577 patients who were randomized and received an infusion (mean age, 44.7 [SD, 15.7] years; 315 [54.6%] women), 533 (92.4%) completed the efficacy evaluation period (day 29). The change in log viral load from baseline at day 11 was -3.72 for 700 mg, -4.08 for 2800 mg, -3.49 for 7000 mg, -4.37 for combination treatment, and -3.80 for placebo. Compared with placebo, the differences in the change in log viral load at day 11 were 0.09 (95% CI, -0.35 to 0.52; P = .69) for 700 mg, -0.27 (95% CI, -0.71 to 0.16; P = .21) for 2800 mg, 0.31 (95% CI, -0.13 to 0.76; P = .16) for 7000 mg, and -0.57 (95% CI, -1.00 to -0.14; P = .01) for combination treatment. Among the secondary outcome measures, differences between each treatment group vs the placebo group were statistically significant for 10 of 84 end points. The proportion of patients with COVID-19-related hospitalizations or ED visits was 5.8% (9 events) for placebo, 1.0% (1 event) for 700 mg, 1.9% (2 events) for 2800 mg, 2.0% (2 events) for 7000 mg, and 0.9% (1 event) for combination treatment. Immediate hypersensitivity reactions were reported in 9 patients (6 bamlanivimab, 2 combination treatment, and 1 placebo). No deaths occurred during the study treatment. Conclusions and Relevance: Among nonhospitalized patients with mild to moderate COVID-19 illness, treatment with bamlanivimab and etesevimab, compared with placebo, was associated with a statistically significant reduction in SARS-CoV-2 viral load at day 11; no significant difference in viral load reduction was observed for bamlanivimab monotherapy. Further ongoing clinical trials will focus on assessing the clinical benefit of antispike neutralizing antibodies in patients with COVID-19 as a primary end point. Trial Registration: ClinicalTrials.gov Identifier: NCT04427501.
Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/aislamiento & purificación , Carga Viral/efectos de los fármacos , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Neutralizantes/efectos adversos , Antivirales/efectos adversos , COVID-19/mortalidad , COVID-19/virología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la EnfermedadRESUMEN
OBJECTIVES: Neutrophils play an important role in regulating immune and inflammatory responses in rheumatoid arthritis (RA). We assessed whether baricitinib, a JAK1/JAK2 inhibitor, could reduce neutrophil activation, and whether a neutrophil activation score could predict treatment response. METHODS: Markers of neutrophil activation, calprotectin, and neutrophil extracellular traps (NETs) were analyzed using ELISA in RA plasma (n=271) and healthy controls (n=39). For RA patients, neutrophil activation markers were measured at baseline, 12 weeks, and 24 weeks after treatment with placebo, 2 mg, and 4 mg baricitinib. Whole blood RNA analyses from multiple randomized baricitinib RA trials were performed to study neutrophil-related transcripts (n=1651). RESULTS: Baseline levels of plasma neutrophil markers were elevated in RA patients compared to healthy controls (p<0.001). Baricitinib reduced levels of soluble calprotectin at 12 and 24 weeks, especially in RA patients responding to treatment, as determined by ACR20. Whole blood RNA analysis revealed similar changes in the predominant neutrophil markers calprotectin and FcαRI upon treatment with baricitinib in three randomized clinical trials involving RA patients at various stages of disease modifying therapy. Clustering analysis of plasma activation markers showed elevated levels of calprotectin and NETs, e.g., a neutrophil activation score, at baseline, could predict treatment response to baricitinib. In contrast, CRP levels could not distinguish between responders and non-responders. CONCLUSIONS: Neutrophil activation markers may add clinical value in predicting treatment response to baricitinib and other drugs targeting RA. This study supports personalized medicine, in treating RA patients, not only based on symptoms, but also based on immunophenotyping.
RESUMEN
Apelin is emerging as an important hormone regulator of cardiovascular homoeostasis and an important biomarker for heart failure. Apelin concentrations have historically been measured by immunoassays; however, reported apelin concentrations measured in healthy volunteers show a large disparity from a few picograms per milliliter (pg/ml) to several nanograms per milliliter (ng/ml). Apelin exists in several isoforms ranging in size from 12 to 36 residues, and immunoassays generally cannot distinguish the specific forms present. In this study, an optimized method for enriching apelin peptides with cation-exchange beads followed with mass spectrometry analysis is presented. Apelin peptides are labile in plasma at physiological conditions; however, by lowering the plasma pH to 4.5, the recovery of apelin peptides can be increased significantly. Through optimizing the cation-exchange extraction process, we improved the lower limit of detection for most of the apelin peptides monitored to a few pg/ml. Using the improved method, we detected pyroglutamyl apelin-13 [(pyr)apelin-13] as the major apelin isoform present in plasma from several healthy volunteers at concentrations ranging from 7.7 to 23.3pg/ml.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/sangre , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/sangre , Valores de Referencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Biologic drugs (therapeutic proteins or peptides) have become one of the most important therapeutic modalities over the past few decades. Drug-induced immunogenicity is a significant concern as it may affect safety, tolerability, and efficacy. With more sensitive and drug-tolerant screening assays in use today, reliable estimation of anti-drug-antibody (ADA) titer has become more important for understanding clinically relevant ADA levels. Titer is commonly defined as the dilution factor resulting in an assay signal equal to a pre-specified cut point factor. Given its influence on the resulting titer precision, the choice of a titer cut point factor warrants careful consideration. In this paper, we discuss the theoretical dilution model, investigate how titer variability depends on the cut point factor and propose a standardized cut point factor to increase precision of titer estimates. Additionally, we demonstrate that non-linear regression-based titer estimation provides both improved precision and implementation efficiency relative to commonly used estimation approaches.
Asunto(s)
Anticuerpos , Productos BiológicosRESUMEN
As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , VacunaciónRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , Epítopos , HumanosRESUMEN
SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.
RESUMEN
This work outlines a new de novo design process for the creation of novel kinase inhibitor libraries. It relies on a profiling paradigm that generates a substantial amount of kinase inhibitor data from which highly predictive QSAR models can be constructed. In addition, a broad diversity of X-ray structure information is needed for binding mode prediction. This is important for scaffold and substituent site selection. Borrowing from FBDD, the process involves fragmentation of known actives, proposition of binding mode hypotheses for the fragments, and model-driven recombination using a pharmacophore derived from known kinase inhibitor structures. The support vector machine method, using Merck atom pair derived fingerprint descriptors, was used to build models from activity from 6 kinase assays. These models were qualified prospectively by selecting and testing compounds from the internal compound collection. Overall hit and enrichment rates of 82% and 2.5%, respectively, qualified the models for use in library design. Using the process, 7 novel libraries were designed, synthesized and tested against these same 6 kinases. The results showed excellent results, yielding a 92% hit rate for the 179 compounds that made up the 7 libraries. The results of one library designed to include known literature compounds, as well as an analysis of overall substituent frequency, are discussed.
Asunto(s)
Modelos Químicos , Modelos Moleculares , Biblioteca de Péptidos , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Animales , Cristalografía por Rayos X , Humanos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis químicaRESUMEN
Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically efficacious when administered early, decreasing hospitalization and mortality in patients with mild or moderate COVID-19. We investigated the effects of receiving mAbs (bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2 infection on the endogenous immune response. Methods: Longitudinal serum samples were collected from patients with mild or moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800 mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus neutralization assays were performed. Results: The antibody response in patients who received placebo or mAbs had a broad specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP) epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load correlated with the subsequent antibody titers of the native, unmodified humoral response (p<0.0001 at Day 15, 29, 60 and 85 for full-length spike). Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and neutralizing activity, potentially due to a decrease in viral load following mAb treatment, suggest minimal impact of mAb treatment on the endogenous immune response.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Antivirales/uso terapéutico , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2RESUMEN
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , COVID-19 , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Macaca mulatta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
OBJECTIVE: To characterise the molecular pathways impacted by the pharmacologic effects of the Janus kinase (JAK) 1 and JAK2 inhibitor baricitinib in SLE. METHODS: In a phase II, 24-week, randomised, placebo-controlled, double-blind study (JAHH), RNA was isolated from whole blood in 274 patients and analysed using Affymetrix HTA2.0 array. Serum cytokines were measured using ultrasensitive quantitative assays. RESULTS: Gene expression profiling demonstrated an elevation of STAT1, STAT2 and multiple interferon (IFN) responsive genes at baseline in patients with SLE. Statistical and gene network analyses demonstrated that baricitinib treatment reduced the mRNA expression of functionally interconnected genes involved in SLE including STAT1-target, STAT2-target and STAT4-target genes and multiple IFN responsive genes. At baseline, serum cytokines IFN-α, IFN-γ, interleukin (IL)-12p40 and IL-6 were measurable and elevated above healthy controls. Treatment with baricitinib significantly decreased serum IL-12p40 and IL-6 cytokine levels at week 12, which persisted through week 24. CONCLUSION: Baricitinib treatment induced significant reduction in the RNA expression of a network of genes associated with the JAK/STAT pathway, cytokine signalling and SLE pathogenesis. Baricitinib consistently reduced serum levels of two key cytokines implicated in SLE pathogenesis, IL-12p40 and IL-6.
Asunto(s)
Azetidinas/uso terapéutico , Lupus Eritematoso Sistémico , Purinas/uso terapéutico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Adulto , Femenino , Expresión Génica , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Persona de Mediana EdadRESUMEN
Baricitinib is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of rheumatoid arthritis (RA) that was independently predicted, using artificial intelligence (AI) algorithms, to be useful for COVID-19 infection via proposed anti-cytokine effects and as an inhibitor of host cell viral propagation. We evaluated the in vitro pharmacology of baricitinib across relevant leukocyte subpopulations coupled to its in vivo pharmacokinetics and showed it inhibited signaling of cytokines implicated in COVID-19 infection. We validated the AI-predicted biochemical inhibitory effects of baricitinib on human numb-associated kinase (hNAK) members measuring nanomolar affinities for AAK1, BIKE, and GAK. Inhibition of NAKs led to reduced viral infectivity with baricitinib using human primary liver spheroids. These effects occurred at exposure levels seen clinically. In a case series of patients with bilateral COVID-19 pneumonia, baricitinib treatment was associated with clinical and radiologic recovery, a rapid decline in SARS-CoV-2 viral load, inflammatory markers, and IL-6 levels. Collectively, these data support further evaluation of the anti-cytokine and anti-viral activity of baricitinib and support its assessment in randomized trials in hospitalized COVID-19 patients.
Asunto(s)
Antivirales/farmacología , Inteligencia Artificial , Azetidinas/farmacología , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Pandemias , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/farmacología , Adulto , Anciano , Antivirales/farmacocinética , Antivirales/uso terapéutico , Azetidinas/farmacocinética , Azetidinas/uso terapéutico , COVID-19 , Citocinas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Leucocitos/efectos de los fármacos , Hígado , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Purinas , Pirazoles , SARS-CoV-2 , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/virología , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapéutico , Tratamiento Farmacológico de COVID-19RESUMEN
SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. ONE SENTENCE SUMMARY: LY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.