Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Chem B ; 12(6): 1467-1489, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38288550

RESUMEN

Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , Terapia Genética/métodos , Neoplasias/genética
2.
Biomater Sci ; 12(6): 1515-1528, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284628

RESUMEN

Destruction of insulin caused by the gastric microenvironment and rapid deactivation pose inevitable barriers to oral macromolecular absorption, especially for most peptide and protein drugs. In this study, we developed high-density sodium alginate microspheres composed of magnesium oxide and urease to address these challenges. These microspheres aim to anchor the gastric mucus layer and induce microenvironmental liquefaction, thereby enhancing gastric retention and the protection of insulin. The sedimentation test confirmed the capability of the Ins/Ur/MgO@SA microsphere to rapidly traverse the gastric juice under the influence of gravity. Additionally, the urease immobilized on the Ins/Ur/MgO@SA microspheres catalyzes the hydrolysis of urea in the gastric mucus and promotes the liquefaction of mucus, which is beneficial for microsphere retention. The inclusion of MgO particles and urease, acting as pHM modifiers, helps in adjusting the local pH to avoid gastric acid-induced damage. Subsequently, an in vivo pharmacokinetic experiment verified that the relative bioavailability of the p.o. Ins/Ur/MgO@SA treated group was 15-fold higher than that of the p.o.insulin treated group. Meanwhile, satisfactory blood glucose level (BGL) reduction was observed in diabetic animals. In conclusion, Ins/Ur/MgO@SA microspheres demonstrate high biocompatibility as insulin carriers with prolonged drug release time and increased gastric retention properties, showing a far-reaching strategy for oral macromolecular drug delivery.


Asunto(s)
Óxido de Magnesio , Ureasa , Animales , Microesferas , Óxido de Magnesio/química , Disponibilidad Biológica , Portadores de Fármacos/química , Insulina , Sustancias Macromoleculares , Alginatos/química , Catálisis , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA