RESUMEN
Stabilin2 (Stab2) encodes a large transmembrane protein which is predominantly expressed in the liver sinusoidal endothelial cells (LSECs) and functions as a scavenger receptor for various macromolecules including hyaluronans (HA). In DBA/2J mice, plasma HA concentration is ten times higher than in 129S6 or C57BL/6J mice, and this phenotype is genetically linked to the Stab2 locus. Stab2 mRNA in the LSECs was significantly lower in DBA/2J than in 129S6, leading to reduced STAB2 proteins in the DBA/2J LSECs. We found a retrovirus-derived transposable element, intracisternal A particle (IAP), in the promoter region of Stab2DBA which likely interferes with normal expression in the LSECs. In contrast, in other tissues of DBA/2J mice, the IAP drives high ectopic Stab2DBA transcription starting within the 5' long terminal repeat of IAP in a reverse orientation and continuing through the downstream Stab2DBA. Ectopic transcription requires the Stab2-IAP element but is dominantly suppressed by the presence of loci on 59.7-73.0 Mb of chromosome (Chr) 13 from C57BL/6J, while the same region in 129S6 requires additional loci for complete suppression. Chr13:59.9-73 Mb contains a large number of genes encoding Krüppel-associated box-domain zinc-finger proteins that target transposable elements-derived sequences and repress their expression. Despite the high amount of ectopic Stab2DBA transcript in tissues other than liver, STAB2 protein was undetectable and unlikely to contribute to the plasma HA levels of DBA/2J mice. Nevertheless, the IAP insertion and its effects on the transcription of the downstream Stab2DBA exemplify that stochastic evolutional events could significantly influence susceptibility to complex but common diseases.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Expresión Génica Ectópica , Genes de Partícula A Intracisternal/genética , Alelos , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Metilación de ADN , Células Endoteliales , Variación Genética , Células HEK293 , Humanos , Ácido Hialurónico/sangre , Hígado/citología , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Regiones Promotoras GenéticasRESUMEN
We have generated low-expressing and high-expressing endothelin-1 genes (L and H) and have bred mice with four levels of expression: L/L, â¼20%; L/+, â¼65%; +/+ (wild type), 100%; and H/+, â¼350%. The hypomorphic L allele can be spatiotemporally switched to the hypermorphic H allele by Cre-loxP recombination. Young adult L/L and L/+ mice have dilated cardiomyopathy, hypertension, and increased plasma volumes, together with increased ventricular superoxide levels, increased matrix metalloproteinase 9 (Mmp9) expression, and reduced ventricular stiffness. H/+ mice have decreased plasma volumes and significantly heavy stiff hearts. Global or cardiomyocyte-specific switching expression from L to H normalized the abnormalities already present in young adult L/L mice. An epithelial sodium channel antagonist normalized plasma volume and blood pressure, but only partially corrected the cardiomyopathy. A superoxide dismutase mimetic made superoxide levels subnormal, reduced Mmp9 overexpression, and substantially improved cardiac function. Genetic absence of Mmp9 also improved cardiac function, but increased superoxide remained. We conclude that endothelin-1 is critical for maintaining normal contractile function, for controlling superoxide and Mmp9 levels, and for ensuring that the myocardium has sufficient collagen to prevent overstretching. Even a modest (â¼35%) decrease in endothelin-1 gene (Edn1) expression is sufficient to cause cardiac dysfunction.
Asunto(s)
Endotelina-1/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Miocardio/metabolismo , Superóxidos/metabolismo , Envejecimiento/patología , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Colágeno/metabolismo , Masculino , Ratones , Miocardio/enzimología , Miocardio/patología , Especificidad de Órganos , Fenotipo , Superóxido Dismutasa/metabolismo , Análisis de SupervivenciaRESUMEN
BACKGROUND: S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity. METHODS: In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. RESULTS: We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protects mitochondrial enzymes by altering S-nitrosylation levels. CONCLUSIONS: Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. GENERAL SIGNIFICANCE: Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms.
Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Ácido Tióctico/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismoRESUMEN
To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.
Asunto(s)
Aldosterona/sangre , Regulación de la Expresión Génica/fisiología , Hiperaldosteronismo/etiología , Natriuresis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Amilorida/farmacología , Angiotensina II/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Cartilla de ADN/genética , Regulación de la Expresión Génica/genética , Tasa de Filtración Glomerular/fisiología , Hiperaldosteronismo/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Renina/sangre , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espironolactona/farmacología , Factor de Crecimiento Transformador beta1/genética , UrinálisisRESUMEN
Polymorphisms in the human endothelial nitric oxide synthase (eNOS) gene (NOS3) have been associated with advanced nephropathy in diabetic patients and with decreased expression in tissue culture. However, direct proof that modest genetic decreases in eNOS expression worsen diabetic nephropathy is lacking. To investigate this effect, we took advantage of the hybrid vigor and genetic uniformity of the F1 progeny (eNOS(+/+), eNOS(+/-), or eNOS(-/-) with or without diabetes) of a cross between heterozygous 129S6/SvEvTac eNOS(+/-) inbred females and heterozygous C57BL/6J eNOS(+/-) inbred males carrying the dominant Akita diabetogenic mutation Ins2(C96Y/+). Whereas all C57BL/6J inbred eNOS(-/-) and eNOS(+/-) diabetic mice died before 5 mo, almost half of the F1 hybrid eNOS(-/-) and eNOS(+/-) diabetic mice lived until killed at 7 mo. Heterozygous eNOS(+/-) diabetic mice expressed â¼35% eNOS mRNA in the kidney and â¼25% glomerular eNOS protein relative to their eNOS(+/+) diabetic littermates. These decreases in eNOS elevated blood pressure (BP) but not blood glucose. Urinary albumin excretion, mesangial expansion, glomerulosclerosis, mesangiolysis, and glomerular filtration rate increased in the order: eNOS(+/+) Akita < eNOS(+/-) Akita < eNOS(-/-) Akita, independently of BP. Glomerular basement membrane thickening depended on increased BP. Renal expression of tissue factor and other inflammatory factors increased with the nephropathy; Nos2 also increased. Surprisingly, however, decreased eNOS expression ameliorated the increases in oxidative stress and tubulointerstitial fibrosis caused by diabetes. Our data demonstrate that a modest decrease in eNOS, comparable to that associated with human NOS3 variants, is sufficient to enhance diabetic nephropathy independently of its effects on BP.
Asunto(s)
Nefropatías Diabéticas/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Presión Sanguínea , Nefropatías Diabéticas/fisiopatología , Femenino , Fibrina/metabolismo , Humanos , Riñón/enzimología , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Tromboplastina/metabolismoRESUMEN
Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic acid synthase deficiency (Lias(+/-)) with Ins2(Akita/+) mice, a well characterized model of type 1 diabetes. Double mutant mice had more overt diabetic nephropathy, including microalbuminuria, glomerular basement thickening, mesangial matrix expansion, and hypertension, compared with Lias(+/+)Ins2(Akita/+) controls. We also identified proximal tubules as a major site for generation of superoxide anions during diabetic nephropathy. Mitochondria in proximal tubular cells were particularly sensitive to damage in diabetic mice with reduced lipoic acid production. These results suggest that lipoic acid synthase deficiency increases oxidative stress and accelerates the development of diabetic nephropathy.
Asunto(s)
Nefropatías Diabéticas/enzimología , Estrés Oxidativo , Sulfurtransferasas/metabolismo , Animales , Glucemia/metabolismo , Citrato (si)-Sintasa/metabolismo , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/patología , Expresión Génica , Hipertensión/etiología , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Superóxidos/metabolismoRESUMEN
Vitamin B12 (B12) is an essential co-factor for two enzymes in mammalian metabolism and can also act as a mimetic of superoxide dismutase (SOD) converting superoxide (O2 â¢â) to hydrogen peroxide (H2O2). High oral dose B12 decreases renal O2 â¢â and post-ischemia/reperfusion injury in mice and protects against damage induced by hypoxia/reperfusion in mouse kidney proximal tubular cells (BU.MPT). O2 â¢â is unstable and rapidly converted to H2O2. H2O2 mediates oxidative stress associated with O2 â¢â. Whether B12 protects against damage induced by H2O2 is unknown. Both BU.MPT cells and mouse brain endothelial cells (bEdn.3) were applied to test the effects of B12 on H2O2-induced cytotoxicity. Both types of cells were treated with different doses of H2O2 with or without different doses of B12. Cell viability was analyzed 24 h later. H2O2 caused cell death only at a very high dose, and high pharmacological dose of B12 did not prevent this detrimental effect in either cell type. In bEnd.3 cells, transcriptional levels of heme oxygenase-1 (HO-1) increased, while nuclear factor erythroid 2-related factor 2 (Nrf2) decreased by H2O2. The levels of transcripts were not affected by the B12 treatment. We conclude that the cytotoxic effects of exogenous H2O2 in BU.MPT and bEdn.3 cells are not prevented by B12.
RESUMEN
We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe -/- mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe -/- mice carrying Aath5 covering the Stab2 DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2 -/- Apoe -/- mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2 -/- Apoe -/- males developed approximately 30% smaller plaques than Stab2 +/+ Apoe -/- mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2 -/- Apoe -/- males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.
RESUMEN
We developed a vaccine formulation containing ApoB derived P210 peptides as autoantigens, retinoic acid (RA) as an immune enhancer, both of which were delivered using PLGA nanoparticles. The formula was used to induce an immune response in 12-week-old male Apoe-/- mice with pre-existing atherosclerotic lesions. The nanotechnology platform PRINT® was used to fabricate PLGA nanoparticles that encapsulated RA inside and adsorbed the P210 onto the particle surface. In this study, we demonstrated that immunization of Apoe-/- mice with the formulation was able to considerably attenuate atherosclerotic lesions, accompanied by increased P210 specific IgM and another oxidized lipid derived autoantigen, M2AA, specific IgG autoantibodies, and decreased the inflammatory response, as compared to the P210 group with Freund's adjuvant. Our formulation represents an exciting technology to enhance the efficacy of the P210 vaccine.
Asunto(s)
Aterosclerosis , Nanopartículas , Animales , Apolipoproteína B-100 , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Masculino , Ratones , Péptidos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , TretinoinaRESUMEN
Nicotinamide (Nam, amide form of niacin acid or nicotinate), a precursor for nicotinamide adenine dinucleotide (NAD+), is important for normal physiological function of organisms. Nam also suppresses mobilization of Ca2+ from sarcoplasmic reticulum into cytoplasm through inhibiting ADP-ribose cyclase. Previously, we have demonstrated that a pharmacological dose of Nam normalizes maternal blood pressure in mouse models of preeclampsia, a pregnancy related hypertensive disorder. We hypothesized that Nam could decrease blood pressure in hypertensive conditions unrelated to pregnancy. Nam at a dose of 500 mg/kg/day was given to wild type (WT) mice treated with L-NAME, endothelial nitric oxide synthase (eNOS)-null and renin transgenic (Renin-Tg) mice via drinking water. Blood pressure was measured by tail-cuff at different stages of treatment. The function and structure of kidneys of WT mice with L-NAME were determined at the end of the study. The gene expression of markers of inflammation and fibrosis in the kidneys of WT mice with L-NAME was also measured. Nam effectively prevented increase in blood pressure in L-NAME treated mice and decreased elevated blood pressure in eNOS-null mice. However, it did not alter high blood pressure in Renin-Tg mice. Nam prevented increase in urinary albumin excretion and collagen deposit in kidneys of WT mice treated with L-NAME. In addition, Nam significantly decreased the mRNA levels of the markers of inflammation and fibrosis in the kidneys of WT mice treated with L-NAME. Nam may execute beneficial effects on hypertensive conditions associated with eNOS dysfunction via suppressing inflammation. Because Nam is generally regarded as safe in humans, it merits further evaluation for the tailored treatment for the subgroup of hypertensive cases associated with impaired eNOS system.
RESUMEN
Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.
Asunto(s)
Aorta/enzimología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Placa Aterosclerótica , Sulfurtransferasas/biosíntesis , Animales , Aorta/inmunología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/inmunología , Aterosclerosis/patología , Autoanticuerpos/sangre , Modelos Animales de Enfermedad , Inducción Enzimática , Lipoproteínas LDL/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Oxidación-Reducción , Estrés Oxidativo , Sulfurtransferasas/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), a potentially fatal syndrome characterized by a rapid decline in kidney function. Excess production of superoxide contributes to the injury. We hypothesized that oral administration of a high dose of vitamin B12 (B12 - cyanocobalamin), which possesses a superoxide scavenging function, would protect kidneys against IRI and provide a safe means of treatment. Following unilateral renal IR surgery, C57BL/6J wild type (WT) mice were administered B12 via drinking water at a dose of 50 mg/L. After 5 days of the treatment, plasma B12 levels increased by 1.2-1.5x, and kidney B12 levels increased by 7-8x. IRI mice treated with B12 showed near normal renal function and morphology. Further, IRI-induced changes in RNA and protein markers of inflammation, fibrosis, apoptosis, and DNA damage response (DDR) were significantly attenuated by at least 50% compared to those in untreated mice. Moreover, the presence of B12 at 0.3 µM in the culture medium of mouse proximal tubular cells subjected to 3 hr of hypoxia followed by 1 hr of reperfusion in vitro showed similar protective effects, including increased cell viability and decreased reactive oxygen species (ROS) level. We conclude that a high dose of B12 protects against perfusion injury both in vivo and in vitro without observable adverse effects in mice and suggest that B12 merits evaluation as a treatment for I/R-mediated AKI in humans.
Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Animales , Apoptosis , Isquemia , Riñón , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/tratamiento farmacológico , Superóxidos , Vitamina B 12RESUMEN
CIB1 is a 22-kDa calcium binding, regulatory protein with approximately 50% homology to calmodulin and calcineurin B. CIB1 is widely expressed and binds to a number of effectors, such as integrin alphaIIb, PAK1, and polo-like kinases, in different tissues. However, the in vivo functions of CIB1 are not well understood. To elucidate the function of CIB1 in whole animals, we used homologous recombination in embryonic stem cells to generate Cib1(-/-) mice. Although Cib1(-/-) mice grow normally, the males are sterile due to disruption of the haploid phase of spermatogenesis. This is associated with reduced testis size and numbers of germ cells in seminiferous tubules, increased germ cell apoptosis, and the loss of elongated spermatids and sperm. Cib1(-/-) testes also show increased mRNA and protein expression of the cell cycle regulator Cdc2/Cdk1. In addition, mouse embryonic fibroblasts (MEFs) derived from Cib1(-/-) mice exhibit a much slower growth rate compared to Cib1(+/+) MEFs, suggesting that CIB1 regulates the cell cycle, differentiation of spermatogenic germ cells, and/or differentiation of supporting Sertoli cells.
Asunto(s)
Proteínas de Unión al Calcio/fisiología , Infertilidad Masculina/inducido químicamente , Espermatogénesis , Testículo/metabolismo , Ácido Acético/química , Animales , Apoptosis , Proteína Quinasa CDC2/metabolismo , Proliferación Celular , Epidídimo/patología , Fibroblastos/fisiología , Formaldehído/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Picratos/química , Recombinación Genética , Espermátides/fisiología , Espermatocitos/fisiología , Testículo/patologíaRESUMEN
Endothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an EDN1 gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified Edn1 allele that increases mRNA stability and thus ET-1 production. Heterozygous Edn1H/+ females showed no obvious abnormalities before pregnancy, but when mated with wild-type (WT) males developed a full spectrum of preeclampsia-like phenotypes, including increased systolic blood pressure, proteinuria, glomerular endotheliosis, and intrauterine fetal growth restriction. At 7.5 days post-coitus, the embryos from Edn1H/+ dams, regardless of their Edn1 genotype, lagged 12 hours in development compared with embryos from WT dams, had disoriented ectoplacental cones, and retained high E-cadherin expression. In contrast, WT females mated with Edn1H/+ males, which also carried half of the fetuses with Edn1H/+ genotype, showed a mild systolic blood pressure increase only. These WT dams had 2× higher plasma soluble fms-like tyrosine kinase-1 than WT dams mated with WT males. In human first trimester trophoblast cells, pharmacological doses of ET-1 increased the cellular sFlt1 transcripts and protein secretion via both type A and B ET-1 receptors. Our data demonstrate that high maternal ET-1 production causes preeclampsia-like phenotypes during pregnancy, affecting both initial stage of trophoblast differentiation/invasion and maternal peripheral vasculature during late gestation. High fetal ET-1 production, however, could cause increased soluble fms-like tyrosine kinase-1 in the maternal circulation and contribute to blood pressure elevation.
Asunto(s)
Endotelina-1/genética , Regulación del Desarrollo de la Expresión Génica , Preeclampsia/genética , Preñez , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Albuminuria/fisiopatología , Análisis de Varianza , Animales , Determinación de la Presión Sanguínea , Endotelina-1/metabolismo , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Preeclampsia/fisiopatología , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Valores de Referencia , Medición de RiesgoRESUMEN
Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT(-/-) mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT(-/-) liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT(-/-) liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production.
Asunto(s)
Peso Corporal , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerofosfolípidos/metabolismo , Hígado/metabolismo , Mitocondrias/enzimología , Triglicéridos/metabolismo , Animales , Sitios de Unión , Femenino , Marcación de Gen , Glicerofosfolípidos/química , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones NoqueadosRESUMEN
Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of atherosclerosis.
Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/genética , Sitios de Carácter Cuantitativo , Animales , Aorta/patología , Aterosclerosis/patología , Mapeo Cromosómico , Cruzamientos Genéticos , Lípidos/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Placa Aterosclerótica/patologíaRESUMEN
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy (DN) but outcomes of many clinical trials are controversial. To define the role of antioxidants in kidney protection during the development of diabetic nephropathy, we have generated a novel genetic antioxidant mouse model with over- or under-expression of lipoic acid synthase gene (Lias). These models have been mated with Ins2Akita/+ mice, a type I diabetic mouse model. We compare the major pathologic changes and oxidative stress status in two new strains of the mice with controls. Our results show that Ins2Akita/+ mice with under-expressed Lias gene, exhibit higher oxidative stress and more severe DN features (albuminuria, glomerular basement membrane thickening and mesangial matrix expansion). In contrast, Ins2Akita/+ mice with highly-expressed Lias gene display lower oxidative stress and less DN pathologic changes. Our study demonstrates that strengthening endogenous antioxidant capacity could be an effective strategy for prevention and treatment of DN.
Asunto(s)
Nefropatías Diabéticas/patología , Sulfurtransferasas/metabolismo , Regiones no Traducidas 3' , Albúminas/análisis , Animales , Glucemia/análisis , Presión Sanguínea , Quimiocina CCL2/orina , Creatinina/orina , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Insulina/genética , Insulina/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Estrés Oxidativo , Sulfurtransferasas/genéticaRESUMEN
Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanism and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production leads to a reduction in energy production in wild-type mice. However, mice lacking inducible nitric oxide synthase did not suffer from LPS-induced hypothermia, suggesting that hypothermia is associated with excess NO production during sepsis. This observation is supported by the treatment of wild-type mice with α-lipoic acid (LA) in that it effectively attenuates LPS-induced hypothermia with decreased NO production. We also found that LA partially restored ATP production, and activities of the mitochondrial enzymes involved in energy metabolism, which were inhibited during sepsis. These data suggest that hypothermia is related to mitochondrial dysfunction, which is probably compromised by excess NO production and that LA administration attenuates hypothermia mainly by protecting mitochondrial enzymes from NO damage.
Asunto(s)
Antioxidantes/farmacología , Hipotermia Inducida , Mitocondrias/efectos de los fármacos , Sepsis/tratamiento farmacológico , Ácido Tióctico/farmacología , Adenosina Trifosfato/agonistas , Adenosina Trifosfato/metabolismo , Animales , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Expresión Génica , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/enzimología , Mitocondrias/patología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sepsis/inducido químicamente , Sepsis/enzimología , Sepsis/patologíaRESUMEN
OBJECTIVES: To study the effects of reduced lipoic acid gene expression on diabetic atherosclerosis in apolipoprotein E null mice (Apoe(-/-)). METHODS AND RESULTS: Heterozygous lipoic acid synthase gene knockout mice (Lias(+/-)) crossed with Apoe(-/-) mice were used to evaluate the diabetic effect induced by streptozotocin on atherosclerosis in the aortic sinus of the heart. While diabetes markedly increased atherosclerotic plaque size in Apoe(-/-) mice, a small but significant effect of reduced expression of lipoic acid gene was observed in diabetic Lias(+/-)Apoe(-/-) mice. In the aortic lesion area, the Lias(+/-)Apoe(-/-) mice exhibited significantly increased macrophage accumulation and cellular apoptosis than diabetic Lias(+/+)Apoe(-/-) littermates. Plasma glucose, cholesterol, and interleukin-6 were also higher. These abnormalities were accompanied with increased oxidative stress including a decreased ratio of reduced glutathione/oxidized glutathione in erythrocytes, increased systemic lipid peroxidation, and increased Gpx1 and MCP1 gene expression in the aorta. CONCLUSIONS: Decreased endogenous lipoic acid gene expression plays a role in development of diabetic atherosclerosis. These findings extend our understanding of the role of antioxidant in diabetic atherosclerosis.