Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Allergy Clin Immunol ; 153(5): 1406-1422.e6, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244725

RESUMEN

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE: We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS: We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS: Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION: Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T , Asma , Inmunidad Innata , Linfocitos , Animales , Femenino , Humanos , Masculino , Ratones , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Asma/inmunología , Interleucina-33/inmunología , Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Eur Heart J ; 42(9): 919-933, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33532862

RESUMEN

AIMS: While most patients with myocardial infarction (MI) have underlying coronary atherosclerosis, not all patients with coronary artery disease (CAD) develop MI. We sought to address the hypothesis that some of the genetic factors which establish atherosclerosis may be distinct from those that predispose to vulnerable plaques and thrombus formation. METHODS AND RESULTS: We carried out a genome-wide association study for MI in the UK Biobank (n∼472 000), followed by a meta-analysis with summary statistics from the CARDIoGRAMplusC4D Consortium (n∼167 000). Multiple independent replication analyses and functional approaches were used to prioritize loci and evaluate positional candidate genes. Eight novel regions were identified for MI at the genome wide significance level, of which effect sizes at six loci were more robust for MI than for CAD without the presence of MI. Confirmatory evidence for association of a locus on chromosome 1p21.3 harbouring choline-like transporter 3 (SLC44A3) with MI in the context of CAD, but not with coronary atherosclerosis itself, was obtained in Biobank Japan (n∼165 000) and 16 independent angiography-based cohorts (n∼27 000). Follow-up analyses did not reveal association of the SLC44A3 locus with CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a broad array of metabolites, including choline, trimethylamine N-oxide, and betaine. However, aortic expression of SLC44A3 was increased in carriers of the MI risk allele at chromosome 1p21.3, increased in ischaemic (vs. non-diseased) coronary arteries, up-regulated in human aortic endothelial cells treated with interleukin-1ß (vs. vehicle), and associated with smooth muscle cell migration in vitro. CONCLUSIONS: A large-scale analysis comprising ∼831 000 subjects revealed novel genetic determinants of MI and implicated SLC44A3 in the pathophysiology of vulnerable plaques.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Japón , Infarto del Miocardio/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
3.
J Lipid Res ; 62: 100061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667465

RESUMEN

Individuals with features of metabolic syndrome are particularly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus associated with the severe respiratory disease, coronavirus disease 2019 (COVID-19). Despite considerable attention dedicated to COVID-19, the link between metabolic syndrome and SARS-CoV-2 infection remains unclear. Using data from the UK Biobank, we investigated the relationship between severity of COVID-19 and metabolic syndrome-related serum biomarkers measured prior to SARS-CoV-2 infection. Logistic regression analyses were used to test biomarker levels and biomarker-associated genetic variants with SARS-CoV-2-related outcomes. Among SARS-CoV-2-positive cases and negative controls, a 10 mg/dl increase in serum HDL-cholesterol or apolipoprotein A1 levels was associated with ∼10% reduced risk of SARS-CoV-2 infection, after adjustment for age, sex, obesity, hypertension, type 2 diabetes, and coronary artery disease. Evaluation of known genetic variants for HDL-cholesterol revealed that individuals homozygous for apolipoprotein E4 alleles had ∼2- to 3-fold higher risk of SARS-CoV-2 infection or mortality from COVID-19 compared with apolipoprotein E3 homozygotes, even after adjustment for HDL-cholesterol levels. However, cumulative effects of all evaluated HDL-cholesterol-raising alleles and Mendelian randomization analyses did not reveal association of genetically higher HDL-cholesterol levels with decreased risk of SARS-CoV-2 infection. These results implicate serum HDL-cholesterol and apolipoprotein A1 levels measured prior to SAR-CoV-2 exposure as clinical risk factors for severe COVID-19 infection but do not provide evidence that genetically elevated HDL-cholesterol levels are associated with SAR-CoV-2 infection.


Asunto(s)
Apolipoproteína A-I , COVID-19 , HDL-Colesterol , Homocigoto , Síndrome Metabólico , SARS-CoV-2/metabolismo , Adulto , Anciano , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Biomarcadores/sangre , COVID-19/sangre , COVID-19/genética , COVID-19/mortalidad , HDL-Colesterol/sangre , HDL-Colesterol/genética , Femenino , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Síndrome Metabólico/mortalidad , Persona de Mediana Edad , Gravedad del Paciente , Reino Unido/epidemiología
4.
Curr Atheroscler Rep ; 23(12): 75, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34648097

RESUMEN

PURPOSE OF REVIEW: We provide an overview of recent findings with respect to gene-environment (GxE) interactions for cardiovascular disease (CVD) risk and discuss future opportunities for advancing the field. RECENT FINDINGS: Over the last several years, GxE interactions for CVD have mostly been identified for smoking and coronary artery disease (CAD) or related risk factors. By comparison, there is more limited evidence for GxE interactions between CVD outcomes and other exposures, such as physical activity, air pollution, diet, and sex. The establishment of large consortia and population-based cohorts, in combination with new computational tools and mouse genetics platforms, can potentially overcome some of the limitations that have hindered human GxE interaction studies and reveal additional association signals for CVD-related traits. The identification of novel GxE interactions is likely to provide a better understanding of the pathogenesis and genetic liability of CVD, with significant implications for healthy lifestyles and therapeutic strategies.


Asunto(s)
Enfermedades Cardiovasculares , Interacción Gen-Ambiente , Animales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Fenotipo , Factores de Riesgo
5.
Trends Endocrinol Metab ; 35(3): 183-184, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302401

RESUMEN

Integrating molecular traits into genetic studies enhances our understanding of how DNA variation influences complex clinical and physiological phenotypes. In a recent article, Benson and colleagues apply this systems genetics approach with proteomics and metabolomics data in plasma from humans to identify and validate several previously unrecognized causal protein-metabolite associations.


Asunto(s)
Metabolómica , Proteómica , Humanos , Fenotipo , Estudio de Asociación del Genoma Completo
6.
Diabetes ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701355

RESUMEN

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes mellitus (DM) is unclear. Here, we used a recently validated stable-isotope dilution highperformance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify a panel of BAs in fasting plasma from subjects (n=2,145) and explored structural and genetic determinants of BAs linked to DM, insulin resistance and obesity. Multiple 12α-hydroxylated BAs were associated with DM [adjusted odds ratios (aORs):1.3-1.9 (all P<0.05)] and insulin resistance [aORs:1.3-2.2 (all P<0.05)]. Conversely, multiple 6a-hydroxylated BAs and isolithocholic acid (Iso-LCA) were inversely associated with DM and obesity [aORs:0.3-0.9 (all P<0.05)]. Genome-wide association studies (GWAS) revealed multiple genome-wide significant loci linked with nine of the 14 DM-associated BAs, including a locus for Iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated DCA levels were causally associated with higher BMI, and Iso-LCA levels were causally associated with reduced BMI and DM risk. In conclusion, comprehensive large-scale quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and Iso-LCA, are clinically associated with and genetically linked to obesity and DM.

7.
Metabolites ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535334

RESUMEN

The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

8.
Nat Med ; 30(2): 424-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374343

RESUMEN

Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.


Asunto(s)
Enfermedades Cardiovasculares , Niacina , Femenino , Humanos , Ratones , Animales , Modelos de Riesgos Proporcionales , Inflamación
9.
medRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168321

RESUMEN

Objective: Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods: Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results: Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions: Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.

10.
Clin Epigenetics ; 14(1): 90, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850911

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) remains the leading cause of death among postmenopausal women but standard primary prevention strategies in women are not as effective as in men. By comparison, the Early versus Late Intervention Trial with Estradiol (ELITE) study demonstrated that hormone therapy (HT) was associated with significant reduction in atherosclerosis progression in women who were within six years of menopause compared to those who were 10 or more years from menopause. These findings are consistent with other studies showing significant reductions in all-cause mortality and CVD with HT, particularly when initiated in women younger than 60 years of age or within 10 years since menopause. To explore the biological mechanisms underlying the age-related atheroprotective effects of HT, we investigated changes in methylation of blood cells of postmenopausal women who participated in ELITE. RESULTS: We first validated the epigenetic data generated from blood leukocytes of ELITE participants by replicating previously known associations between smoking and methylation levels at previously identified CpG sites, such as cg05575921 at the AHRR locus. An epigenome-wide association study (EWAS) evaluating changes in methylation through interactions with time-since-menopause and HT revealed two significantly associated CpG sites on chromosomes 12 (cg19552895; p = 1.1 × 10-9) and 19 (cg18515510; p = 2.4 × 10-8). Specifically, HT resulted in modest, but significant, increases in methylation levels at both CpGs but only in women who were 10 or more years since menopause and randomized to HT. Changes in carotid artery intima-media thickness (CIMT) from baseline to 36 months after HT were not significantly correlated with changes in methylation levels at either cg19552895 or cg18515510. Evaluation of other previously identified CpG sites at which methylation levels in either blood or vascular tissue were associated with atherosclerosis also did not reveal any differences in methylation as a function of HT and time-since-menopause or with changes in CIMT. CONCLUSIONS: We identified specific methylation differences in blood in response to HT among women who were 10 or more years since menopause. The functional consequence of these change with respect to atherosclerosis progression and protective effects of HT remains to be determined and will require additional studies.


Asunto(s)
Terapia de Reemplazo de Estrógeno , Posmenopausia , Aterosclerosis , Enfermedades Cardiovasculares , Grosor Intima-Media Carotídeo , Metilación de ADN , Terapia de Reemplazo de Estrógeno/métodos , Femenino , Humanos , Persona de Mediana Edad , Posmenopausia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA