Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(1): 473-532, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732829

RESUMEN

The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRß). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRß has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Masculino , Animales , Femenino , Humanos , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Caracteres Sexuales , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
2.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280429

RESUMEN

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Asunto(s)
Factores de Transcripción Forkhead , Expresión Génica , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Biomarcadores/metabolismo , Técnicas de Inactivación de Genes , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/genética
3.
Am J Physiol Renal Physiol ; 326(4): F611-F621, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385173

RESUMEN

Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.


Asunto(s)
Hipertensión , ATPasas de Translocación de Protón Vacuolares , Masculino , Humanos , Femenino , Ratones , Animales , Angiotensina II/farmacología , Receptor de Prorenina , Riñón/metabolismo , Sistema Renina-Angiotensina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Renina/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830399

RESUMEN

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Asunto(s)
Eicosanoides , Glucocorticoides , Inflamación , Lipogénesis , Hígado , Receptores de Glucocorticoides , Animales , Ratones , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
5.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R81-R95, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37212551

RESUMEN

The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Enfermedades Cardiovasculares/genética , Dieta Alta en Grasa , Hipertensión/patología , Hígado/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genética
6.
Hepatology ; 76(5): 1376-1388, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35313030

RESUMEN

BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.


Asunto(s)
Hepatopatías , Receptor de Insulina , Humanos , Ratones , Animales , Receptor de Insulina/metabolismo , Roedores , Cirrosis Hepática/patología , Hígado/patología , Hepatopatías/patología , Fibrosis , Proteínas Quinasas/metabolismo , Colágeno/metabolismo , Serina/metabolismo , Receptores con Dominio Discoidina/metabolismo , Treonina/metabolismo
7.
Curr Hypertens Rep ; 25(8): 151-162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37191842

RESUMEN

PURPOSE OF REVIEW: Metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver that occurs in the majority of patients in combination with metabolic dysfunction in the form of overweight or obesity. In this review, we highlight the cardiovascular complications in MAFLD patients as well as some potential mechanisms linking MAFLD to the development of cardiovascular disease and highlight potential therapeutic approaches to treating cardiovascular diseases in patients with MAFLD. RECENT FINDINGS: MAFLD is associated with an increased risk of cardiovascular diseases (CVD), including hypertension, atherosclerosis, cardiomyopathies, and chronic kidney disease. While clinical data have demonstrated the link between MAFLD and the increased risk of CVD development, the mechanisms responsible for this increased risk remain unknown. MAFLD can contribute to CVD through several mechanisms including its association with obesity and diabetes, increased levels of inflammation, and oxidative stress, as well as alterations in hepatic metabolites and hepatokines. Therapies to potentially treat MAFLD-induced include statins and lipid-lowering drugs, glucose-lowering agents, antihypertensive drugs, and antioxidant therapy.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Hepatopatías , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedades Cardiovasculares/etiología , Estrés Oxidativo , Obesidad/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones
8.
J Immunol ; 207(3): 765-770, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301840

RESUMEN

Glucocorticoids are a highly effective first-line treatment option for many inflammatory diseases, including asthma. Some patients develop a steroid-resistant condition, yet, the cellular and molecular mechanisms underlying steroid resistance remain largely unknown. In this study, we used a murine model of steroid-resistant airway inflammation and report that combining systemic dexamethasone and intranasal IL-27 is able to reverse the inflammation. Foxp3+ regulatory T cells (Tregs) were required during dexamethasone/IL-27 treatment of steroid-resistant allergic inflammation, and importantly, direct stimulation of Tregs via glucocorticoid or IL-27 receptors was essential. Mechanistically, IL-27 stimulation in Tregs enhanced expression of the agonistic glucocorticoid receptor-α isoform. Overexpression of inhibitory glucocorticoid receptor-ß isoform in Tregs alone was sufficient to elicit steroid resistance in a steroid-sensitive allergic inflammation model. Taken together, our results demonstrate for the first time, to our knowledge, that Tregs are instrumental during steroid resistance and that manipulating steroid responsiveness in Tregs may represent a novel strategy to treat steroid refractory asthma.


Asunto(s)
Asma/inmunología , Dexametasona/uso terapéutico , Interleucina-27/uso terapéutico , Hipersensibilidad Respiratoria/inmunología , Linfocitos T Reguladores/inmunología , Alérgenos/inmunología , Animales , Asma/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico
9.
Clin Sci (Lond) ; 136(18): 1347-1366, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36148775

RESUMEN

The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by ß-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.


Asunto(s)
Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Ácidos Grasos/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
10.
J Biol Chem ; 295(29): 9804-9822, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32404366

RESUMEN

Activation of lipid-burning pathways in the fat-storing white adipose tissue (WAT) is a promising strategy to improve metabolic health and reduce obesity, insulin resistance, and type II diabetes. For unknown reasons, bilirubin levels are negatively associated with obesity and diabetes. Here, using mice and an array of approaches, including MRI to assess body composition, biochemical assays to measure bilirubin and fatty acids, MitoTracker-based mitochondrial analysis, immunofluorescence, and high-throughput coregulator analysis, we show that bilirubin functions as a molecular switch for the nuclear receptor transcription factor peroxisome proliferator-activated receptor α (PPARα). Bilirubin exerted its effects by recruiting and dissociating specific coregulators in WAT, driving the expression of PPARα target genes such as uncoupling protein 1 (Ucp1) and adrenoreceptor ß 3 (Adrb3). We also found that bilirubin is a selective ligand for PPARα and does not affect the activities of the related proteins PPARγ and PPARδ. We further found that diet-induced obese mice with mild hyperbilirubinemia have reduced WAT size and an increased number of mitochondria, associated with a restructuring of PPARα-binding coregulators. We conclude that bilirubin strongly affects organismal body weight by reshaping the PPARα coregulator profile, remodeling WAT to improve metabolic function, and reducing fat accumulation.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Bilirrubina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mitocondrias/metabolismo , PPAR alfa/metabolismo , Animales , Bilirrubina/metabolismo , Ratones , Receptores Adrenérgicos beta 3/biosíntesis , Proteína Desacopladora 1/biosíntesis
11.
Am J Physiol Endocrinol Metab ; 320(2): E191-E207, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284088

RESUMEN

Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.


Asunto(s)
Bilirrubina/sangre , Bilirrubina/fisiología , Metabolismo Energético , Hormonas/fisiología , Animales , Bilirrubina/deficiencia , Metabolismo Energético/genética , Regulación de la Expresión Génica , Enfermedad de Gilbert/sangre , Enfermedad de Gilbert/genética , Enfermedad de Gilbert/metabolismo , Hemo/metabolismo , Humanos , Hiperbilirrubinemia/complicaciones , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/metabolismo , Redes y Vías Metabólicas/genética , PPAR alfa/metabolismo , PPAR alfa/fisiología
12.
Molecules ; 26(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067839

RESUMEN

Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin's known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.


Asunto(s)
Bilirrubina/metabolismo , PPAR alfa/metabolismo , Bilirrubina/fisiología , Unión Competitiva , Células HEK293 , Humanos , Ligandos , PPAR alfa/fisiología , Unión Proteica/fisiología
13.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327438

RESUMEN

Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Animales , Bilirrubina/metabolismo , Productos Biológicos/metabolismo , Curcumina/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Physiol Genomics ; 51(6): 234-240, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074682

RESUMEN

Bilirubin is a potent antioxidant that reduces inflammation and the accumulation of fat. There have been reports of gene responses to bilirubin, which was mostly attributed to its antioxidant function. Using RNA sequencing, we found that biliverdin, which is rapidly reduced to bilirubin, induced transcriptome responses in human HepG2 hepatocytes in a peroxisome proliferator-activated receptor (PPAR)-α-dependent fashion (398 genes with >2-fold change; false discovery rate P < 0.05). For comparison, a much narrower set of genes demonstrated differential expression when PPAR-α was suppressed via lentiviral shRNA knockdown (23 genes). Gene set enrichment analysis revealed the bilirubin-PPAR-α transcriptome mediates pathways for oxidation-reduction processes, mitochondrial function, response to nutrients, fatty acid oxidation, and lipid homeostasis. Together, these findings suggest that transcriptome responses from the generation of bilirubin are mostly PPAR-α dependent, and its antioxidant function regulates a smaller set of genes.


Asunto(s)
Bilirrubina/genética , Hepatocitos/metabolismo , PPAR alfa/genética , Transcriptoma/genética , Antioxidantes/metabolismo , Células Hep G2 , Homeostasis/genética , Humanos , Metabolismo de los Lípidos/genética , Mitocondrias/genética , Oxidación-Reducción , Análisis de Secuencia de ARN/métodos
15.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R733-R745, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483154

RESUMEN

Agonists for PPARα are used clinically to reduce triglycerides and improve high-density lipoprotein (HDL) cholesterol levels in patients with hyperlipidemia. Whether the mechanism of PPARα activation to lower serum lipids occurs in the liver or other tissues is unknown. To determine the function of hepatic PPARα on lipid profiles in diet-induced obese mice, we placed hepatocyte-specific peroxisome proliferator-activated receptor-α (PPARα) knockout (PparaHepKO) and wild-type (Pparafl/fl) mice on high-fat diet (HFD) or normal fat diet (NFD) for 12 wk. There was no significant difference in weight gain, percent body fat mass, or percent body lean mass between the groups of mice in response to HFD or NFD. Interestingly, the PparaHepKO mice on HFD had worsened hepatic inflammation and a significant shift in the proinflammatory M1 macrophage population. These changes were associated with higher hepatic fat mass and decreased hepatic lean mass in the PparαHepKO on HFD but not in NFD as measured by Oil Red O and noninvasive EchoMRI analysis (31.1 ± 2.8 vs. 20.2 ± 1.5, 66.6 ± 2.5 vs. 76.4 ± 1.5%, P < 0.05). We did find that this was related to significantly reduced peroxisomal gene function and lower plasma ß-hydroxybutyrate in the PparaHepKO on HFD, indicative of reduced metabolism of fats in the liver. Together, these provoked higher plasma triglyceride and apolipoprotein B100 levels in the PparaHepKO mice compared with Pparafl/fl on HFD. These data indicate that hepatic PPARα functions to control inflammation and liver triglyceride accumulation that prevent hyperlipidemia.


Asunto(s)
Hígado Graso/metabolismo , Hepatocitos/metabolismo , Hiperlipidemias/metabolismo , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Obesidad/metabolismo , PPAR alfa/deficiencia , Adiposidad , Animales , Apolipoproteína B-100/sangre , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/sangre , Hígado Graso/genética , Hígado Graso/patología , Hepatocitos/patología , Hiperlipidemias/sangre , Hiperlipidemias/genética , Hiperlipidemias/patología , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Hígado/patología , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , Obesidad/patología , PPAR alfa/genética , Triglicéridos/sangre
16.
Arch Biochem Biophys ; 672: 108072, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31422074

RESUMEN

Obesity is the predominant cause of non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance and diabetes. NAFLD includes a spectrum of pathologies that starts with simple steatosis, which can progress to non-alcoholic steatohepatitis (NASH) with the commission of other factors such as the enhancement of reactive oxygen species (ROS). Biliverdin reductase A (BVRA) reduces biliverdin to the antioxidant bilirubin, which may serve to prevent NAFLD, and possibly the progression to NASH. To further understand the role of BVRA in hepatic function, we used CRISPR-Cas9 technology to target the Blvra gene in the murine hepa1c1c7 hepatocyte cell line (BVRA KO). BVRA activity and protein levels were significantly lower in BVRA KO vs. wild-type (WT) hepatocytes. Lipid accumulation under basal and serum-starved conditions was significantly (p < 0.05) higher in BVRA KO vs. WT cells. The loss of BVRA resulted in the reduction of mitochondria number, decreased expression of markers of mitochondrial biogenesis, uncoupling, oxidation, and fusion, which paralleled reduced mitochondrial oxygen consumption. BVRA KO cells exhibited increased levels of ROS generation and decreased levels of superoxide dismutase mRNA expression. In conclusion, our data demonstrate a critical role for BVRA in protecting against lipid accumulation and oxidative stress in hepatocytes, which may serve as a future therapeutic target for NAFLD and its progression to NASH.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Estrés Oxidativo/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Animales , Bilirrubina/metabolismo , Línea Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Especies Reactivas de Oxígeno/metabolismo
17.
Curr Hypertens Rep ; 21(11): 87, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31599366

RESUMEN

PURPOSE OF REVIEW: To discuss recent advances indicating that bilirubin safeguards against cardiorenal and metabolic diseases. RECENT FINDINGS: Several investigations from human patient populations and experimental animal models have shown that bilirubin improves cardiorenal and metabolic dysfunction. The latest studies found an entirely new function of bilirubin suggesting that it acts as a hormone signaling molecule capable of activating nuclear receptors for burning fat, which may explain several of its protective actions. This review highlights the current findings (within the last 3 years) regarding cardiorenal and metabolic protective effects of bilirubin and the latest mechanism(s) that may be mediating these effects.


Asunto(s)
Antioxidantes/metabolismo , Bilirrubina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Antioxidantes/análisis , Bilirrubina/sangre , Enfermedades Cardiovasculares/prevención & control , Humanos , Hipertensión/prevención & control , Enfermedades Renales/prevención & control , Enfermedades Metabólicas/prevención & control
18.
Am J Physiol Renal Physiol ; 315(2): F323-F331, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29631357

RESUMEN

Obesity and increased lipid availability have been implicated in the development and progression of chronic kidney disease. One of the major sites of renal lipid accumulation is in the proximal tubule cells of the kidney, suggesting that these cells may be susceptible to lipotoxicity. We previously demonstrated that loss of hepatic biliverdin reductase A (BVRA) causes fat accumulation in livers of mice on a high-fat diet. To determine the role of BVRA in mouse proximal tubule cells, we generated a CRISPR targeting BVRA for a knockout in mouse proximal tubule cells (BVRA KO). The BVRA KO cells had significantly less metabolic potential and mitochondrial respiration, which was exacerbated by treatment with palmitic acid, a saturated fatty acid. The BVRA KO cells also showed increased intracellular triglycerides which were associated with higher fatty acid uptake gene cluster of differentiation 36 as well as increased de novo lipogenesis as measured by higher neutral lipids. Additionally, neutrophil gelatinase-associated lipocalin 1 expression, annexin-V FITC staining, and lactate dehydrogenase assays all demonstrated that BVRA KO cells are more sensitive to palmitic acid-induced lipotoxicity than wild-type cells. Phosphorylation of BAD which plays a role in cell survival pathways, was significantly reduced in palmitic acid-treated BVRA KO cells. These data demonstrate the protective role of BVRA in proximal tubule cells against saturated fatty acid-induced lipotoxicity and suggest that activating BVRA could provide a benefit in protecting from obesity-induced kidney injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Ácido Palmítico/toxicidad , Animales , Antígenos CD36/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Eliminación de Gen , Edición Génica/métodos , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , L-Lactato Deshidrogenasa/metabolismo , Lipocalina 2/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Ácido Palmítico/metabolismo , Fosforilación , Triglicéridos/metabolismo , Proteína Letal Asociada a bcl/metabolismo
19.
Am J Physiol Gastrointest Liver Physiol ; 314(6): G668-G676, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494209

RESUMEN

The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.


Asunto(s)
Bilirrubina , Hígado Graso/metabolismo , Cirrosis Hepática/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Bilirrubina/metabolismo , Bilirrubina/farmacología , Progresión de la Enfermedad , Hígado Graso/etiología , Humanos , Cirrosis Hepática/prevención & control , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/farmacología , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología
20.
J Biol Chem ; 291(47): 24475-24486, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27687725

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) and runt-related transcription factor 2 (RUNX2) are key regulators of mesenchymal stem cell (MSC) differentiation toward adipocytes and osteoblasts, respectively. Post-translational modifications of these factors determine their activities. Dephosphorylation of PPARγ at Ser-112 is required for its adipocytic activity, whereas phosphorylation of RUNX2 at serine 319 (Ser-319) promotes its osteoblastic activity. Here we show that protein phosphatase 5 (PP5) reciprocally regulates each receptor by targeting each serine. Mice deficient in PP5 phosphatase have increased osteoblast numbers and high bone formation, which results in high bone mass in the appendicular and axial skeleton. This is associated with a substantial decrease in lipid-containing marrow adipocytes. Indeed, in the absence of PP5 the MSC lineage allocation is skewed toward osteoblasts and away from lipid accumulating adipocytes, although an increase in beige adipocyte gene expression is observed. In the presence of rosiglitazone, PP5 translocates to the nucleus, binds to PPARγ and RUNX2, and dephosphorylates both factors, resulting in activation of PPARγ adipocytic and suppression of RUNX2 osteoblastic activities. Moreover, shRNA knockdown of PP5 results in cells refractory to rosiglitazone treatment. Lastly, mice deficient in PP5 are resistant to the negative effects of rosiglitazone on bone, which in wild type animals causes a 50% decrease in trabecular bone mass. In conclusion, PP5 is a unique phosphatase reciprocally regulating PPARγ and RUNX2 activities in marrow MSC.


Asunto(s)
Peso Corporal/efectos de los fármacos , Huesos/metabolismo , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Glicoproteínas/metabolismo , PPAR gamma/metabolismo , Tiazolidinedionas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Animales , Peso Corporal/genética , Núcleo Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Glicoproteínas/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , PPAR gamma/genética , Rosiglitazona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA