Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Cell Physiol ; 306(12): C1191-9, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760980

RESUMEN

We have previously shown that ischemic preconditioning (IPC) protection against necrosis in whole hearts and in both fresh and cultured cardiomyocytes, as well as the improved regulatory volume decrease to hypoosmotic swelling in cardiomyocytes, is abrogated through Cl(-) channel blockade, pointing to a role for enhanced cell volume regulation in IPC. To further define this cardioprotective mechanism, cultured rabbit ventricular cardiomyocytes were preconditioned either by 10-min simulated ischemia (SI) followed by 10-min simulated reperfusion (SR), by 10-min exposure/10-min washout of remote IPC (rIPC) plasma dialysate (from rabbits subjected to repetitive limb ischemia), or by adenoviral transfection with the constitutively active PKC-ε gene. These interventions were done before cardiomyocytes were subjected to either 60- or 75-min SI/60-min SR to assess cell necrosis (by trypan blue staining), 30-min SI to assess ischemic cell swelling, or 30-min hypoosmotic (200 mosM) stress to assess cell volume regulation. Necrosis after SI/SR and both SI- and hypoosmotic stress-induced swelling was reduced in preconditioned cardiomyocytes compared with control cardiomyocytes (neither preconditioned nor transfected). These effects on necrosis and cell swelling were blocked by either Cl(-) channel blockade or dominant negative knockdown of inwardly rectifying K(+) channels with adenoviruses, suggesting that Cl(-) and K(+) movements across the sarcolemma are critical for cell volume regulation and, thereby, cell survival under hypoxic/ischemic conditions. Our results define enhanced cell volume regulation as a key common mechanism of cardioprotection by preconditioning in cardiomyocytes.


Asunto(s)
Tamaño de la Célula , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Animales , Canales de Cloruro/metabolismo , Isquemia , Infarto del Miocardio/prevención & control , Necrosis/fisiopatología , Canales de Potasio/metabolismo , Conejos , Reperfusión , Sarcolema/metabolismo
2.
J Mol Cell Cardiol ; 60: 142-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608604

RESUMEN

Multiple initiatives are underway to harness the clinical benefits of remote ischemic preconditioning (rIPC) based on applying non-invasive, brief, intermittent limb ischemia/reperfusion using an external occluder. However, little is known about how rIPC induces protection in cardiomyocytes, particularly through G-protein coupled receptors. In these studies, we determined the role of opioid and adenosine receptors and their functional interactions in rIPC cardioprotection. In freshly isolated cardiomyocytes subjected to 45-min simulated ischemia followed by 60-min simulated reperfusion, we examined the ability of plasma dialysate (derived from blood obtained from rabbits remotely preconditioned by application of brief cycles of hind limb ischemia/reperfusion, rIPC dialysate) to protect cells against necrosis. rIPC dialysate and selective activation of either δ-opioid receptors or κ-opioid receptors significantly reduced the % of dead cells after simulated ischemia and simulated reperfusion. Inhibition of adenosine A1 receptors, but not adenosine A3 receptors, blocked the protection by rIPC dialysate, δ-opioid receptor and κ-opioid receptor activation. In HEK293 cells expressing either hemagglutinin A-tagged δ-opioid receptors or hemagglutinin A-tagged κ-opioid receptors, selective immunoprecipitation of adenosine A1 receptors pulled down both δ-opioid and κ-opioid receptors. This molecular association of adenosine A1 receptors with δ-opioid and κ-opioid receptors was confirmed by reverse pull-down assays. These findings strongly suggest that rIPC cardioprotection requires the activation of δ-opioid and κ-opioid receptors and relies on these receptors functionally interacting with adenosine A1 receptors.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/metabolismo , Receptor de Adenosina A1/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Células HEK293 , Humanos , Miocitos Cardíacos/patología , Conejos
3.
Circ Res ; 95(3): 325-32, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15231687

RESUMEN

Volume regulatory Cl- channels are key regulators of ischemic preconditioning (IPC). Because Cl- efflux must be balanced by an efflux of cations to maintain cell membrane electroneutrality during volume regulation, we hypothesize that I(K1) channels may play a role in IPC. We subjected cultured cardiomyocytes to 60-minute simulated ischemia (SI) followed by 60-minute of simulated reperfusion (SR) and assessed percent cell death using trypan blue staining. Ischemic preconditioning (10-minute SI/10-minute SR) significantly (P<0.0001) reduced the percent cell death in nontransfected cardiomyocytes [IPC(CM) 18.0+/-2.1% versus control (C(CM)) 48.3+/-1.0%]. IPC protection was not altered by overexpression of the reporter gene (enhanced green fluorescent protein, EGFP). However, overexpression of dominant-negative Kir2.1 or Kir2.2 genes using adenoviruses (AdEGFPKir2.1DN or AdEGFPKir2.2DN) encoding the reporter gene EGFP prevented IPC protection [both IPC(CM)+AdEGFPKir2.1DN 45.8+/-2.3% (mean+/-SEM) and IPC(CM)+AdEGFPKir2.2DN 47.9+/-1.4% versus IPC(CM); P<0.0001] in cultured cardiomyocytes (n=8 hearts). Transfection of cardiomyocytes with AdEGFPKir2.1DN or AdEGFPKir2.2DN did not affect cell death in control (nonpreconditioned) cardiomyocytes (both C(CM)+ AdEGFPKir2.1DN 45.8+/-0.7% and C(CM)+AdEGFPKir2.2DN 46.2+/-1.3% versus C(CM); not statistically significant). Similar effects were observed in both cultured (n=5 hearts) and freshly isolated (n=4 hearts) ventricular cardiomyocytes after I(K1) blockade with 20 micromol/L BaCl2 plus 1 micromol/L nifedipine (to prevent Ba2+ uptake). Nifedipine alone neither protected against ischemic injury nor blocked IPC protection. Our findings establish that I(K1) channels play an important role in IPC protection.


Asunto(s)
Precondicionamiento Isquémico , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Adenoviridae/genética , Animales , Bario/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Supervivencia Celular , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Cloruros/metabolismo , Vectores Genéticos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Reperfusión Miocárdica , Miocitos Cardíacos/metabolismo , Nifedipino/farmacología , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Conejos , Proteínas Recombinantes de Fusión/fisiología , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Transfección
4.
Biochim Biophys Acta ; 1588(3): 247-53, 2002 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12393180

RESUMEN

Primary deficiency of beta-galactosidase results in GM1 gangliosidosis and Morquio B disease. Of the more than 40 disease-causing mutations described in the Gal gene to date, about 75% are of the missense type and are scattered along the length of the gene. No single, major common mutation has been associated with GM1 gangliosidosis. However, a Trp 273 Leu mutation has been commonly found in the majority of patients with Morquio B disease defined genotypically to date. We now report three new mutations in three Morquio B patients where the Trp 273 Leu mutation is absent. Two of the mutations, C1502G (Asn 484 Lys) and A1548G (Thr 500 Ala), were found in twins (one male, one female) who display a mild form of Morquio B disease and keratan sulfate in the urine. In their fibroblasts, residual activity was 1.9% and 2.1% of controls. On Western blots, the 84-kDa precursor and the 64-kDa mature protein were barely detectable. The occurrence of a 45-kDa degradation product indicates that the mutated protein reached the lysosome but was abnormally processed. In the third case, we identified only a G1363A (Gly 438 Glu) mutation (a major deletion on the second allele has not been ruled out). This female patient too displays a very mild form of the disease with a residual activity of 5.7% of control values. In fibroblasts from this case, the 84-kDa precursor and the 45-kDa degradation product were present, while the mature 64-kDa form was barely detectable. The occurrence of these three mutations in the same area of the protein may define a domain involved in keratan sulfate degradation.


Asunto(s)
Enfermedades en Gemelos/genética , Mucopolisacaridosis IV/genética , Mutación , beta-Galactosidasa/genética , Niño , Femenino , Fibroblastos/enzimología , Humanos , Leupeptinas , Masculino , Mucopolisacaridosis IV/metabolismo , Mucopolisacaridosis IV/patología , Reacción en Cadena de la Polimerasa , Gemelos Dicigóticos/genética , beta-Galactosidasa/análisis
5.
Cardiovasc Res ; 98(3): 411-9, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23483048

RESUMEN

AIMS: Cyclosporin A (CsA) has been shown to protect against ischaemia/reperfusion injury presumably by its inhibition of mitochondrial permeability transition pore opening through cyclophilin D inhibition. We examine if CsA cardioprotection involves a cell-volume regulatory mechanism. METHODS AND RESULTS: To address this issue, cultured rabbit cardiomyocytes were subjected to the following protocols: (i) cardiomyocytes were treated with 200 nM CsA either given for 10 min followed by 10 min of washout prior to 30 min hypo-osmotic stress (200 mOsm) or administered throughout 75 min simulated ischaemia/60 min simulated reperfusion. Cell necrosis and cell swelling were determined by trypan blue staining and cell-volume measurements, respectively; (ii) SPQ(6-methoxy-N-(3-sulfopropyl)quinolinium) dye loaded cardiomyocytes were treated with 200 nM CsA for 10 min followed by 10 min washout and intracellular Cl(-) concentration measured (Cl(-) efflux); (iii) 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimi-dazolylcarbocyanine iodide(JC-1) loaded cardiomyocytes were treated with 200 nM CsA to inhibit mitochondrial membrane potential (ΔΨm) dissipation (an index of mitochondria permeability transition pore opening) by either valinomycin (2 µM) or ischaemia/reperfusion injury. Cl(-) channels were blocked by indanyloxyacetic acid 94 (IAA-94, 50 µM). CsA not only significantly (P < 0.001) reduced the % of dead cells following simulated ischaemia/reperfusion but it also triggered an efflux of Cl(-), hence enhancing cardiomyocyte cell-volume regulatory response. CsA protection against cell necrosis and its effect on Cl(-) transport/volume regulation were all blocked by IAA-94. IAA-94 had no effect on ΔΨm. CONCLUSION: These data indicate that CsA protects against cell necrosis at least in part by enhancing cardiomyocyte volume regulation, and not simply by inhibiting MPTP opening.


Asunto(s)
Tamaño de la Célula/efectos de los fármacos , Ciclosporina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Células Cultivadas , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Citoprotección , Transporte Iónico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necrosis , Presión Osmótica/efectos de los fármacos , Conejos , Factores de Tiempo
6.
Cardiovasc Res ; 87(3): 545-51, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20228398

RESUMEN

AIMS: We have previously shown that reduction of ischaemic cell swelling via enhanced cell volume regulation is a key mechanism of ischaemic preconditioning (IPC) in cardiomyocytes. We have also shown that pharmacological blockade of Cl(-) channels abolishes cardioprotection achieved by IPC in Langendorff-perfused hearts and freshly isolated cardiomyocytes, thus suggesting that Cl(-) plays a key role in IPC cardioprotection. However, direct evidence of Cl(-) channel activation resulting in transsarcolemmal Cl(-) efflux by IPC had been lacking. To address this issue, 24 h cultured rabbit cardiomyocytes were loaded with 5 mM 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ), a specific fluorescence indicator that is quenched by Cl(-) so that cellular efflux of Cl(-) results in an increase in SPQ fluorescence. METHODS AND RESULTS: After stabilization for 10 min, cardiomyocytes were preconditioned either with 10 min simulated ischaemia/10 min simulated reperfusion or with 10 min treatment with 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA). IPC and APNEA significantly (P < 0.001) reduced the intracellular Cl(-) concentration ([Cl(-)](i)) to 31.9 +/- 3.2 mM (mean +/- SEM) and 32.5 +/- 2.8 mM, respectively, from an initial [Cl(-)](i) (pooled stabilization 61.5 +/- 7.1 mM). [Cl(-)](i) did not change in control (non-preconditioned) cardiomyocytes (control 58.1 +/- 1.9 mM and control + vehicle 62.6 +/- 4.9 mM, P = 0.98 and 0.99 vs. pooled pre-treatment baseline, respectively). Inhibition of Cl(-) channels with 50 microM indanyloxyacetic acid 94 completely blocked preconditioning-induced Cl(-) efflux. Thus, a net Cl(-) efflux of 29.6 and 29.0 mM was triggered by IPC and APNEA. CONCLUSION: These findings provide the first direct evidence of activation of sarcolemmal Cl(-) channels by ischaemic and pharmacological preconditioning in cardiomyocytes.


Asunto(s)
Adenosina/análogos & derivados , Fármacos Cardiovasculares/farmacología , Canales de Cloruro/efectos de los fármacos , Cloruros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Precondicionamiento Isquémico Miocárdico , Miocitos Cardíacos/efectos de los fármacos , Sarcolema/efectos de los fármacos , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A3 , Animales , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Canales de Cloruro/metabolismo , Colorantes Fluorescentes , Glicolatos/farmacología , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Compuestos de Quinolinio , Conejos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A3/metabolismo , Sarcolema/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA