RESUMEN
The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.
Asunto(s)
COVID-19/transmisión , COVID-19/virología , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Inglaterra/epidemiología , Evolución Molecular , Genoma Viral/genética , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Factores de Tiempo , Adulto JovenRESUMEN
Considerable spatial heterogeneity has been observed in COVID-19 transmission across administrative areas of England throughout the pandemic. This study investigates what drives these differences. We constructed a probabilistic case count model for 306 administrative areas of England across 95 weeks, fit using a Bayesian evidence synthesis framework. We incorporate the impact of acquired immunity, of spatial exportation of cases, and 16 spatially-varying socio-economic, socio-demographic, health, and mobility variables. Model comparison assesses the relative contributions of these respective mechanisms. We find that spatially-varying and time-varying differences in week-to-week transmission were definitively associated with differences in: time spent at home, variant-of-concern proportion, and adult social care funding. However, model comparison demonstrates that the impact of these terms is negligible compared to the role of spatial exportation between administrative areas. While these results confirm the impact of some, but not all, static measures of spatially-varying inequity in England, our work corroborates the finding that observed differences in disease transmission during the pandemic were predominantly driven by underlying epidemiological factors rather than aggregated metrics of demography and health inequity between areas. Further work is required to assess how health inequity more broadly contributes to these epidemiological factors.
Asunto(s)
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/transmisión , COVID-19/epidemiología , Inglaterra/epidemiología , Pandemias/estadística & datos numéricos , Factores Socioeconómicos , Disparidades en el Estado de Salud , Modelos EstadísticosRESUMEN
BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Cohortes , Inglaterra/epidemiología , Hospitalización , Humanos , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
BACKGROUND: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. METHODS: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. FINDINGS: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69-83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500-5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700-1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. INTERPRETATION: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, and UK Foreign, Commonwealth and Development Office.
Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/transmisión , Control de Enfermedades Transmisibles/organización & administración , SARS-CoV-2 , Cobertura de Vacunación/organización & administración , COVID-19/epidemiología , COVID-19/mortalidad , Inglaterra/epidemiología , Mortalidad Hospitalaria/tendencias , Hospitalización/estadística & datos numéricos , Humanos , Modelos Teóricos , Admisión del Paciente/estadística & datos numéricosRESUMEN
BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.
Asunto(s)
Control de Enfermedades Transmisibles , Enfermedades Transmisibles/mortalidad , Enfermedades Transmisibles/virología , Modelos Teóricos , Mortalidad/tendencias , Años de Vida Ajustados por Calidad de Vida , Vacunación , Preescolar , Control de Enfermedades Transmisibles/economía , Control de Enfermedades Transmisibles/estadística & datos numéricos , Enfermedades Transmisibles/economía , Análisis Costo-Beneficio , Países en Desarrollo , Femenino , Salud Global , Humanos , Programas de Inmunización , Masculino , Vacunación/economía , Vacunación/estadística & datos numéricosRESUMEN
BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO2 emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.
Asunto(s)
Cólera , Epidemias , África/epidemiología , Cólera/epidemiología , Brotes de Enfermedades , Sequías , Humanos , Modelos LinealesRESUMEN
Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third.
Asunto(s)
Pruebas Diagnósticas de Rutina , Fiebre Hemorrágica Ebola , África Occidental/epidemiología , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/transmisión , Humanos , Factores de Tiempo , TriajeRESUMEN
BACKGROUND: After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the USA. This has led to substantial interest in their "test, trace, isolate" strategy. However, it is important to understand the epidemiological peculiarities of South Korea's outbreak and characterise their response before attempting to emulate these measures elsewhere. METHODS: We systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. RESULTS: We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI, 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June, Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent "lockdown" measures, strong social distancing measures were implemented in high-incidence areas and studies measured a considerable national decrease in movement in late February. Testing the capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly; however, we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. CONCLUSIONS: Whilst early adoption of testing and contact tracing is likely to be important for South Korea's successful outbreak control, other factors including regional implementation of strong social distancing measures likely also contributed. The high volume of testing and the low number of deaths suggest that South Korea experienced a small epidemic relative to other countries. Caution is needed in attempting to replicate the South Korean response in populations with larger more geographically widespread epidemics where finding, testing, and isolating cases that are linked to clusters may be more difficult.
Asunto(s)
Betacoronavirus , Trazado de Contacto/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Teorema de Bayes , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Trazado de Contacto/tendencias , Infecciones por Coronavirus/diagnóstico , Brotes de Enfermedades/prevención & control , Humanos , Neumonía Viral/diagnóstico , Cuarentena/tendencias , República de Corea/epidemiología , SARS-CoV-2RESUMEN
BACKGROUND: The ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved. METHODS AND FINDINGS: Over 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = -0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the case line-list. Linking cases to the contacts who potentially infected them provided information on the transmission network. This revealed a high degree of heterogeneity in inferred transmissions, with only 20% of cases accounting for at least 73% of new infections, a phenomenon often called super-spreading. Multivariable regression models allowed us to identify predictors of being named as a potential source contact. These were similar for funeral and non-funeral contacts: severe symptoms, death, non-hospitalisation, older age, and travelling prior to symptom onset. Non-funeral exposures were strongly peaked around the death of the contact. There was evidence that hospitalisation reduced but did not eliminate onward exposures. We found that Ebola treatment units were better than other health care facilities at preventing exposure from hospitalised and deceased individuals. The principal limitation of our analysis is limited data quality, with cases not being entered into the database, cases not reporting exposures, or data being entered incorrectly (especially dates, and possible misclassifications). CONCLUSIONS: Achieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population.
Asunto(s)
Brotes de Enfermedades , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Guinea/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Humanos , Liberia/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Sierra Leona/epidemiologíaRESUMEN
Estimates of the global health impact of immunisation are important for quantifying historical benefits as well as planning future investments and strategy. The Vaccine Impact Modelling Consortium (VIMC) was established in 2016 to provide reliable estimates of the health impact of immunisation. In this article we examine the consortium in its first five-year phase. We detail how vaccine impact was defined and the methods used to estimate it as well as the technical infrastructure required to underpin robust reproducibility of the outputs. We highlight some of the applications of estimates to date, how these were communicated and what their effect were. Finally, we explore some of the lessons learnt and remaining challenges for estimating the impact of vaccines and forming effective modelling consortia then discuss how this may be addressed in the second phase of VIMC. Modelled estimates are not a replacement for surveillance; however, they can examine theoretical counterfactuals and highlight data gaps to complement other activities. VIMC has implemented strategies to produce robust, standardised estimates of immunisation impact. But through the first phase of the consortium, critical lessons have been learnt both on the technical infrastructure and the effective engagement with modellers and stakeholders. To be successful, a productive dialogue with estimate consumers, producers and stakeholders needs to be underpinned by a rigorous and transparent analytical framework as well as an approach for building expertise in the short and long term.
Asunto(s)
Vacunación , Humanos , Salud Global , Programas de Inmunización , Modelos Teóricos , Reproducibilidad de los Resultados , Vacunación/estadística & datos numéricos , Vacunación/psicología , Vacunas/administración & dosificaciónRESUMEN
BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49â119 additional deaths (95% credible interval [CrI] 17â248-134â941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37â378â194 deaths averted (34â450â249-40â241â202) to 36â410â559 deaths averted (33â515â397-39â241â799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18â900 [7037-60â223] of 25â356 [9859-75â073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.
Asunto(s)
COVID-19 , Hepatitis B , Sarampión , Meningitis , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Rubéola (Sarampión Alemán) , Enfermedades Prevenibles por Vacunación , Fiebre Amarilla , Humanos , Infecciones por Papillomavirus/prevención & control , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Inmunización , Hepatitis B/tratamiento farmacológicoAsunto(s)
Costo de Enfermedad , Fiebre Hemorrágica Ebola , Periodo de Incubación de Enfermedades Infecciosas , Adolescente , Adulto , África Occidental/epidemiología , Factores de Edad , Niño , Preescolar , Progresión de la Enfermedad , Epidemias , Femenino , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Incidencia , Lactante , Recién Nacido , MasculinoRESUMEN
BACKGROUND: Several vaccine candidates are in development against MERS-CoV, which remains a major public health concern. In anticipation of available MERS-CoV vaccines, we examine strategies for their optimal deployment among health-care workers. METHODS: Using data from the 2013-14 Saudi Arabia epidemic, we use a counterfactual analysis on inferred transmission trees (who-infected-whom analysis) to assess the potential impact of vaccination campaigns targeting health-care workers, as quantified by the proportion of cases or deaths averted. We investigate the conditions under which proactive campaigns (ie vaccinating in anticipation of the next outbreak) would outperform reactive campaigns (ie vaccinating in response to an unfolding outbreak), considering vaccine efficacy, duration of vaccine protection, effectiveness of animal reservoir control measures, wait (time between vaccination and next outbreak, for proactive campaigns), reaction time (for reactive campaigns), and spatial level (hospital, regional, or national, for reactive campaigns). We also examine the relative efficiency (cases averted per thousand doses) of different strategies. FINDINGS: The spatial scale of reactive campaigns is crucial. Proactive campaigns outperform campaigns that vaccinate health-care workers in response to outbreaks at their hospital, unless vaccine efficacy has waned significantly. However, reactive campaigns at the regional or national levels consistently outperform proactive campaigns, regardless of vaccine efficacy. When considering the number of cases averted per vaccine dose administered, the rank order is reversed: hospital-level reactive campaigns are most efficient, followed by regional-level reactive campaigns, with national-level and proactive campaigns being least efficient. If the number of cases required to trigger reactive vaccination increases, the performance of hospital-level campaigns is greatly reduced; the impact of regional-level campaigns is variable, but that of national-level campaigns is preserved unless triggers have high thresholds. INTERPRETATION: Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating only health-care workers, underlining the need for countries at risk of outbreaks to stockpile vaccines when available. FUNDING: UK Medical Research Council, UK National Institute for Health Research, UK Research and Innovation, UK Academy of Medical Sciences, The Novo Nordisk Foundation, The Schmidt Foundation, and Investissement d'Avenir France.
Asunto(s)
Epidemias , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Vacunación , Personal de Salud , Brotes de Enfermedades/prevención & control , Epidemias/prevención & controlRESUMEN
In an emergency epidemic response, data providers supply data on a best-faith effort to modellers and analysts who are typically the end user of data collected for other primary purposes such as to inform patient care. Thus, modellers who analyse secondary data have limited ability to influence what is captured. During an emergency response, models themselves are often under constant development and require both stability in their data inputs and flexibility to incorporate new inputs as novel data sources become available. This dynamic landscape is challenging to work with. Here we outline a data pipeline used in the ongoing COVID-19 response in the UK that aims to address these issues. A data pipeline is a sequence of steps to carry the raw data through to a processed and useable model input, along with the appropriate metadata and context. In ours, each data type had an individual processing report, designed to produce outputs that could be easily combined and used downstream. Automated checks were in-built and added as new pathologies emerged. These cleaned outputs were collated at different geographic levels to provide standardised datasets. Finally, a human validation step was an essential component of the analysis pathway and permitted more nuanced issues to be captured. This framework allowed the pipeline to grow in complexity and volume and facilitated the diverse range of modelling approaches employed by researchers. Additionally, every report or modelling output could be traced back to the specific data version that informed it ensuring reproducibility of results. Our approach has been used to facilitate fast-paced analysis and has evolved over time. Our framework and its aspirations are applicable to many settings beyond COVID-19 data, for example for other outbreaks such as Ebola, or where routine and regular analyses are required.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Salud Pública , Reproducibilidad de los Resultados , Brotes de EnfermedadesRESUMEN
As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.3 (95% credible interval (CrI) 7.7-8.8). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of immunity in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.9%, 95% CrI 2.7-3.2), followed by Delta (2.2%, 95% CrI 2.0-2.4), Wildtype (1.2%, 95% CrI 1.1-1.2), and Omicron (0.7%, 95% CrI 0.6-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiología , Inglaterra/epidemiologíaRESUMEN
BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.