Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 2975, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806739

RESUMEN

Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address how Daphnia pulex survival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl-/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3 /L). D. pulex survival was poor in our hard water treatment in both experiments (185 mg CaCO3 /L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3 /L), we found no evidence of an interactive effect between salt concentration and water hardness on D. pulex survival. In our population-level experiment, D. pulex survival was reduced by > 60% at 120 mg Cl-/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl-/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl-/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Cl- concentration and in hard water. Our results indicate that current Cl- thresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt.


Asunto(s)
Contaminantes Químicos del Agua , Zooplancton , Animales , Dureza , Contaminantes Químicos del Agua/análisis , Cloruro de Sodio , Cloruro de Sodio Dietético , Reproducción , Daphnia
2.
Environ Pollut ; 330: 121767, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146869

RESUMEN

Contaminants in human-dominated landscapes are changing ecological interactions. The global increase in freshwater salinity is likely to change predator-prey interactions due to the potential interactive effects between predatory stress and salt stress. We conducted two experiments to assess the interactions between the non-consumptive effects of predation and elevated salinity on the abundance and vertical movement rate of a common lake zooplankton species (Daphnia mendotae). Our results revealed an antagonism rather than a synergism between predatory stress and salinity on zooplankton abundance. Elevated salinity and predator cues triggered a >50% reduction in abundance at salt concentrations of 230 and 860 mg Cl-/L, two thresholds designed to protect freshwater organisms from chronic and acute effects due to salt pollution. We found a masking effect between salinity and predation on vertical movement rate of zooplankton. Elevated salinity reduced zooplankton vertical movement rate by 22-47%. A longer exposure history only magnified the reduction in vertical movement rate when compared to naïve individuals (no prior salinity exposure). Downward movement rate under the influence of predatory stress in elevated salinity was similar to the control, which may enhance the energetic costs of predator avoidance in salinized ecosystems. Our results suggest antagonistic and masking effects between elevated salinity and predatory stress will have consequences for fish-zooplankton interactions in salinized lakes. Elevated salinity could impose additional energetic constraints on zooplankton predator avoidance behaviors and vertical migration, which may reduce zooplankton population size and community interactions supporting the functioning of lake ecosystems.


Asunto(s)
Daphnia , Ecosistema , Humanos , Animales , Conducta Predatoria , Lagos , Peces , Zooplancton
3.
J Food Prot ; 86(6): 100089, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024093

RESUMEN

Foodborne outbreak investigations have traditionally included the detection of a cluster of illnesses first, followed by an epidemiologic investigation to identify a food of interest. The increasing use of whole genome sequencing (WGS) subtyping technology for clinical, environmental, and food isolates of foodborne pathogens, and the ability to share and compare the data on public platforms, present new opportunities to identify earlier links between illnesses and their potential sources. We describe a process called sample-initiated retrospective outbreak investigations (SIROIs) used by federal public health and regulatory partners in the United States. SIROIs begin with an evaluation of the genomic similarity between bacterial isolates recovered from food or environmental samples and clusters of clinical isolates while subsequent and parallel epidemiologic and traceback investigations are initiated to corroborate their connection. SIROIs allow for earlier hypothesis generation, followed by targeted collection of information about food exposures and the foods and manufacturer of interest, to confirm a link between the illnesses and their source. This often leads to earlier action that could reduce the breadth and burden of foodborne illness outbreaks. We describe two case studies of recent SIROIs and present the benefits and challenges. Benefits include insight into foodborne illness attribution, international collaboration, and opportunities for enhanced food safety efforts in the food industry. Challenges include resource intensiveness, variability of epidemiologic and traceback data, and an increasingly complex food supply chain. SIROIs are valuable in identifying connections among small numbers of illnesses that may span significant time periods; detecting early signals for larger outbreaks or food safety issues associated with manufacturers; improving our understanding of the scope of contamination of foods; and identifying novel pathogen/commodity pairs.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Humanos , Estados Unidos , Estudios Retrospectivos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Inocuidad de los Alimentos , Brotes de Enfermedades , Alimentos , Microbiología de Alimentos
4.
Food Environ Virol ; 14(3): 236-245, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35871245

RESUMEN

Globally, hepatitis A virus (HAV) is one of the most common agents of acute viral hepatitis and causes approximately 1.4 million cases and 90,000 deaths annually despite the existence of an effective vaccine. In 2019, federal, state, and local partners investigated a multi-state outbreak of HAV infections linked to fresh blackberries sourced from multiple suppliers in Michoacán, Mexico. A total of 20 individuals with outbreak-related HAV infection were reported in seven states, including 11 hospitalizations, and no deaths. The Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and Nebraska State and Douglas County Health Departments conducted a traceback investigation for fresh blackberries reportedly purchased by 16 ill persons. These individuals reported purchasing fresh blackberries from 11 points of service from September 16 through 29, 2019 and their clinical isolates assessed through next-generation sequencing and phylogenetic analysis were genetically similar. The traceback investigation did not reveal convergence on a common grower or packing house within Mexico, but all of the blackberries were harvested from growers in Michoacán, Mexico. FDA did not detect the pathogen after analyzing fresh blackberry samples from four distributors, one consumer, and from nine importers at the port of entry as a result of increased screening. Challenges included gaps in traceability practices and the inability to recover the pathogen from sample testing, which prohibited investigators from determining the source of the implicated blackberries. This multi-state outbreak illustrated the importance of food safety practices for fresh produce that may contribute to foodborne illness outbreaks.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Virus de la Hepatitis A , Hepatitis A , Rubus , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Hepatitis A/epidemiología , Virus de la Hepatitis A/genética , Humanos , Filogenia , Estados Unidos/epidemiología
5.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259246

RESUMEN

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Animales , Brotes de Enfermedades/prevención & control , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Genómica , Estados Unidos , Secuenciación Completa del Genoma
6.
Infect Genet Evol ; 73: 214-220, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31039448

RESUMEN

We review how FDA surveillance identifies several ways that whole genome sequencing (WGS) improves actionable outcomes for public health and compliance in a case involving Listeria monocytogenes contamination in an ice cream facility. In late August 2017 FDA conducted environmental sampling inside an ice cream facility. These isolates were sequenced and deposited into the GenomeTrakr databases. In September 2018 the Centers for Disease Control and Prevention contacted the Florida Department of Health after finding that the pathogen analyses of three clinical cases of listeriosis (two in 2013, one in 2018) were highly related to the aforementioned L. monocytogenes isolates collected from the ice cream facility. in 2017. FDA returned to the ice cream facility in late September 2018 and conducted further environmental sampling and again recovered L. monocytogenes from environmental subsamples that were genetically related to the clinical cases. A voluntary recall was issued to include all ice cream manufactured from August 2017 to October 2018. Subsequently, FDA suspended this food facility's registration. WGS results for L. monocytogenes found in the facility and from clinical samples clustered together by 0-31 single nucleotide polymorphisms (SNPs). The FDA worked together with the Centers for Disease Control and Prevention, as well as the Florida Department of Health, and the Florida Department of Agriculture and Consumer Services to recall all ice cream products produced by this facility. Our data suggests that when available isolates from food facility inspections are subject to whole genome sequencing and the subsequent sequence data point to linkages between these strains and recent clinical isolates (i.e., <20 nucleotide differences), compliance officials should take regulatory actions early to prevent further potential illness. The utility of WGS for applications related to enforcement of FDA compliance programs in the context of foodborne pathogens is reviewed.


Asunto(s)
Microbiología de Alimentos , Helados/microbiología , Listeria/genética , Listeria/aislamiento & purificación , Secuenciación Completa del Genoma , Industria de Alimentos , Humanos , Instalaciones Industriales y de Fabricación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA