Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Pharm Sci ; 111(3): 663-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34706282

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have proven efficacy as gene therapy vehicles. However, non-specific adsorption of these vectors on solid surfaces is encountered during production, storage, and administration, as well as in quantification processes. Such adsorption has been reported to result in the loss of up to 90% of vector particles and can also result in high variability in vector genome quantification. In this study, we demonstrate the effective decrease of recombinant adeno-associated virus vector adsorption by application of a polyionic hydrophilic complex polymer coating on the surfaces of the tools used in viral vector quantification analyses [i.e., pipette tips, cryotube vials, and quantitative polymerase chain reaction (qPCR) plates]. qPCR analyses showed efficient recovery of vector particles from tools with this coating, with up to 95% of vector particle loss being prevented, leading to a higher transduction efficiency in vitro. Thus, the tested coating has the potential to be widely used in material processing in the gene therapy field.


Asunto(s)
Dependovirus , Vectores Genéticos , Adsorción , Dependovirus/genética , Terapia Genética
2.
Sci Rep ; 12(1): 10815, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752647

RESUMEN

Repellent coatings are critical for the development of biomedical and analytical devices to prevent nonspecific protein and cell adhesion. In this study, prevelex (polyampholytes containing phosphate and amine units) was synthesized for the fine coating of microdevices for cell culture. The dip-coating of the prevelex on hydrophobic substrates altered their surfaces to be highly hydrophilic and electrically neutral. The range of prebake temperature (50-150 °C) after dip-coating was moderate and within a preferable range to treat typical materials for cell culture such as polystyrene and polydimethylsiloxane. Scanning electron microscopy revealed a conformal and ultra-thin film coating on the micro/nano structures. When compared with poly(2-hydroxyethyl methacrylate) and poly(2-methacryloyloxyethyl phosphorylcholine), prevelex exhibited better characteristics for coating on microwell array devices, thereby facilitating the formation of spheroids with uniform diameters using various cell types. Furthermore, to examine cellular functionalities, mouse embryonic epithelial and mesenchymal cells were seeded in a prevelex-coated microwell array device. The two types of cells formed hair follicle germ-like aggregates in the device. The aggregates were then transplanted to generate de novo hair follicles in nude mice. The coating material provided a robust and fine coating approach for the preparation of non-fouling surfaces for tissue engineering and biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Animales , Adhesión Celular , Materiales Biocompatibles Revestidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Desnudos , Microscopía Electrónica de Rastreo
3.
Colloids Surf B Biointerfaces ; 123: 878-86, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25466462

RESUMEN

Brushes of a polymer, namely poly(carboxymethylbetaine) (PCMB), were fabricated on silicon wafers by reversible addition-fragmentation chain-transfer (RAFT) polymerization using a surface-confined RAFT agent having an aromatic group at its bottom. The polymer brush showed effective suppression of the non-specific adsorption of bovine serum albumin (BSA) and adhesion of fibroblasts (3T3 cells). In contrast, BSA and 3T3 cells significantly adsorbed on and adhered to positively or negatively charged polymer brushes fabricated by the same procedure. Upon UV irradiation at 193 nm, the thickness of the PCMB brush with an aromatic group at its bottom decreased significantly whereas PCMB prepared using a surface-confined RAFT agent without an aromatic group needed a much higher irradiation dose to afford a comparable decrease in thickness. These results indicate a preferential cleavage of the PCMB brush due to photodecomposition of the phenyl group at the bottom. BSA and 3T3 cells non-specifically adsorbed on and adhered to the UV irradiation-induced hollow spaces, respectively. Furthermore, a designed pattern with a resolution of 5 µm was successfully made on the PCMB brush above the silicon wafer by simple UV irradiation. These results suggest that the surface-confined aromatic RAFT agent will be quite useful for simple photolithography in biomedical fields.


Asunto(s)
Polímeros/química , Silicio/química , Polimerizacion , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA