Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(6): 942-957, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34635911

RESUMEN

Human cerebral cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Progenitor cells include apical radial glia, intermediate progenitors and basal (or outer) radial glia (bRGs or oRGs). bRGs are few in number in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 (coding for a RAB-GAP protein) at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 expression in wild-type (WT) brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, using the same approach, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Indeed, we observe perturbation of the ventricular zone (VZ) in the mutant. Lis1 depletion altered adhesion proteins and mitotic spindle orientations at the ventricular surface and increased the proportion of abventricular mitoses. Progenitor outcome could not be further altered by TBC1D3. We conclude that disruption of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Lisencefalia , Proteínas Asociadas a Microtúbulos/genética , Malformaciones del Sistema Nervioso , Animales , Dineínas/genética , Células Ependimogliales/metabolismo , Proteínas Activadoras de GTPasa/genética , Lisencefalia/genética , Ratones , Mitosis , Mutación , Malformaciones del Sistema Nervioso/genética
2.
J Neurosci ; 42(37): 7031-7046, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35906071

RESUMEN

Alpha-synuclein (αSyn) and tau are abundant multifunctional neuronal proteins, and their intracellular deposits have been linked to many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Despite the disease relevance, their physiological roles remain elusive, as mice with knock-out of either of these genes do not exhibit overt phenotypes. To reveal functional cooperation, we generated αSyn-/-tau-/- double-knock-out mice and characterized the functional cross talk between these proteins during brain development. Intriguingly, deletion of αSyn and tau reduced Notch signaling and accelerated interkinetic nuclear migration of G2 phase at early embryonic stage. This significantly altered the balance between the proliferative and neurogenic divisions of progenitor cells, resulting in an overproduction of early born neurons and enhanced neurogenesis, by which the brain size was enlarged during the embryonic stage in both sexes. On the other hand, a reduction in the number of neural progenitor cells in the middle stage of corticogenesis diminished subsequent gliogenesis in the αSyn-/-tau-/- cortex. Additionally, the expansion and maturation of macroglial cells (astrocytes and oligodendrocytes) were suppressed in the αSyn-/-tau-/- postnatal brain, which in turn reduced the male αSyn-/-tau-/- brain size and cortical thickness to less than the control values. Our study identifies important functional cooperation of αSyn and tau during corticogenesis.SIGNIFICANCE STATEMENT Correct understanding of the physiological functions of αSyn and tau in CNS is critical to elucidate pathogenesis involved in the etiology of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. We show here that αSyn and tau are cooperatively involved in brain development via maintenance of progenitor cells. αSyn and tau double-knock-out mice exhibited an overproduction of early born neurons and accelerated neurogenesis at early corticogenesis. Furthermore, loss of αSyn and tau also perturbed gliogenesis at later embryonic stage, as well as the subsequent glial expansion and maturation at postnatal brain. Our findings provide new mechanistic insights and extend therapeutic opportunities for neurodegenerative diseases caused by aberrant αSyn and tau.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Cell ; 132(3): 474-86, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18267077

RESUMEN

Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Embrión de Mamíferos/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Células Neuroepiteliales/citología , Huso Acromático/metabolismo , Células Madre/citología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Encéfalo/citología , Encéfalo/embriología , Ciclo Celular , Movimiento Celular , Proliferación Celular , Dineínas/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Neuronas/citología
4.
Cereb Cortex ; 27(8): 3918-3929, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27371763

RESUMEN

Neuronal nitric oxide synthase is involved in diverse signaling cascades that regulate neuronal development and functions via S-Nitrosylation-mediated mechanism or the soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway activated by nitric oxide. Although it has been studied extensively in vitro and in invertebrate animals, effects on mammalian brain development and underlying mechanisms remain poorly understood. Here we report that genetic deletion of "Nos1" disrupts dendritic development, whereas pharmacological inhibition of the sGC/cGMP pathway does not alter dendritic growth during cerebral cortex development. Instead, nuclear distribution element-like (NDEL1), a protein that regulates dendritic development, is specifically S-nitrosylated at cysteine 203, thereby accelerating dendritic arborization. This post-translational modification is enhanced by N-methyl-D-aspartate receptor-mediated neuronal activity, the main regulator of dendritic formation. Notably, we found that disruption of S-Nitrosylation of NDEL1 mediates impaired dendritic maturation caused by developmental alcohol exposure, a model of developmental brain abnormalities resulting from maternal alcohol use. These results highlight S-Nitrosylation as a key activity-dependent mechanism underlying neonatal brain maturation and suggest that reduction of S-Nitrosylation of NDEL1 acts as a pathological factor mediating neurodevelopmental abnormalities caused by maternal alcohol exposure.


Asunto(s)
Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Trastornos del Espectro Alcohólico Fetal/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Animales , Proteínas Portadoras/genética , Dendritas/efectos de los fármacos , Dendritas/patología , Modelos Animales de Enfermedad , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología
5.
J Neurosci ; 35(7): 2942-58, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698733

RESUMEN

Cell positioning and neuronal network formation are crucial for proper brain function. Disrupted-in-Schizophrenia 1 (DISC1) is anterogradely transported to the neurite tips, together with Lis1, and functions in neurite extension via suppression of GSK3ß activity. Then, transported Lis1 is retrogradely transported and functions in cell migration. Here, we show that DISC1-binding zinc finger protein (DBZ), together with DISC1, regulates mouse cortical cell positioning and neurite development in vivo. DBZ hindered Ndel1 phosphorylation at threonine 219 and serine 251. DBZ depletion or expression of a double-phosphorylated mimetic form of Ndel1 impaired the transport of Lis1 and DISC1 to the neurite tips and hampered microtubule elongation. Moreover, application of DISC1 or a GSK3ß inhibitor rescued the impairments caused by DBZ insufficiency or double-phosphorylated Ndel1 expression. We concluded that DBZ controls cell positioning and neurite development by interfering with Ndel1 from disproportionate phosphorylation, which is critical for appropriate anterograde transport of the DISC1-complex.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Transporte Biológico , Células Cultivadas , Corteza Cerebral/embriología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Fosforilación , Embarazo , Transfección
6.
EMBO J ; 29(3): 517-31, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20019668

RESUMEN

Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein-LIS1-microtubule complex in a kinesin-1-dependent manner. However, the underlying mechanism by which a cytoplasmic dynein-LIS1-microtubule complex binds kinesin-1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin-1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin-1. mNUDC is also required for anterograde transport of a dynactin-containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin-1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin-1 and supports their transport by kinesin-1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin-1.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Dineínas Citoplasmáticas/metabolismo , Cinesinas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Complejo Dinactina , Ganglios Espinales/metabolismo , Cinesinas/metabolismo , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Porcinos
7.
PLoS Genet ; 7(3): e1001331, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423666

RESUMEN

Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases.


Asunto(s)
Encéfalo/metabolismo , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Ciclo Celular , Polaridad Celular/genética , Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fenotipo , Proteína Quinasa C/metabolismo , Transducción de Señal , Sinapsis/fisiología , Regulación hacia Arriba
8.
J Neurosci ; 32(32): 11050-66, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22875938

RESUMEN

Neuronal migration is a critical feature to ensure proper location and wiring of neurons during cortical development. Postmitotic neurons migrate from the ventricular zone into the cortical plate to establish neuronal lamina in an "inside-out" gradient of maturation. Here, we report that the mitotic kinase Aurora-A is critical for the regulation of microtubule organization during neuronal migration via an Aurora-A-NDEL1 pathway in the mouse. Suppression of Aurora-A activity by inhibitors or siRNA resulted in severe impairment of neuronal migration of granular neurons. In addition, in utero injection of the Aurora-A kinase-dead mutant provoked defective migration of cortical neurons. Furthermore, we demonstrated that suppression of Aurora-A impaired microtubule modulation in migrating neurons. Interestingly, suppression of CDK5 by an inhibitor or siRNA reduced Aurora-A activity and NDEL1 phosphorylation by Aurora-A, which led to defective neuronal migration. We found that CDK5RAP2 is a key molecule that mediates functional interaction and is essential for centrosomal targeting of Aurora-A. Our observations demonstrated novel and surprising cross talk between Aurora-A and CDK5 during neuronal migration.


Asunto(s)
Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Amiodarona , Análisis de Varianza , Animales , Animales Recién Nacidos , Aurora Quinasa A , Aurora Quinasas , Bromodesoxiuridina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Neuronas/efectos de los fármacos , Fosforilación/genética , Piperazinas/farmacología , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Purinas/farmacología , ARN Interferente Pequeño/farmacología , Roscovitina , Factores Sexuales , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
9.
J Neurophysiol ; 109(2): 429-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23100132

RESUMEN

LIS1 gene mutations lead to a rare neurological disorder, classical lissencephaly, characterized by brain malformations, mental retardation, seizures, and premature death. Mice heterozygous for Lis1 (Lis1(+/-)) exhibit cortical malformations, defects in neuronal migration, increased glutamate-mediated synaptic transmission, and spontaneous electrographic seizures. Recent work demonstrated that in utero treatment of Lis1(+/-) mutant dams with ALLN, a calpain inhibitor, partially rescues neuronal migration defects in the offspring. Given the challenges of in utero drug administration, we examined the therapeutic potential of ALLN on postnatal lissencephalic cells. Voltage- and current-clamp studies were performed with acute hippocampal slices obtained from Lis1 mutant mice and age-matched littermate control mice. Specifically, we determined whether postnatal ALLN treatment can reverse excitatory synaptic transmission deficits, namely, an increase in spontaneous and miniature excitatory postsynaptic current (EPSC) frequency, on CA1 pyramidal neurons observed in tissue slices from Lis1(+/-) mice. We found that acute application of ALLN restored spontaneous and miniature EPSC frequencies to wild-type levels without affecting inhibitory postsynaptic synaptic current. Furthermore, Western blot analysis of protein expression, including proteins involved in excitatory synaptic transmission, demonstrated that ALLN blocks the cleavage of the calpain substrate αII-spectrin but does not rescue Lis1 protein levels in Lis1(+/-) mutants.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Inhibidores de Cisteína Proteinasa/uso terapéutico , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Leupeptinas/uso terapéutico , Lisencefalia/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos/genética , Animales , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Expresión Génica , Heterocigoto , Lisencefalia/genética , Lisencefalia/fisiopatología , Ratones , Ratones Mutantes , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Mutación , Proteolisis , Células Piramidales/metabolismo , Células Piramidales/fisiopatología , Espectrina/metabolismo
10.
J Cell Sci ; 124(Pt 6): 857-64, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325031

RESUMEN

The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.


Asunto(s)
Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas de Choque Térmico/genética , Humanos , Microtúbulos/genética , Proteínas Nucleares/genética , Unión Proteica
11.
Nat Genet ; 34(3): 274-85, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12796778

RESUMEN

Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller-Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3epsilon (YWHAE), one of a family of ubiquitous phosphoserine/threonine-binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3epsilon binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3epsilon results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3epsilon in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.


Asunto(s)
Anomalías Múltiples/patología , Encefalopatías/patología , Encéfalo/anomalías , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Inhibidores Enzimáticos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Proteínas 14-3-3 , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Células Cultivadas , Proteína Coatómero/metabolismo , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Dineínas/metabolismo , Femenino , Proteínas Fluorescentes Verdes , Humanos , Técnicas para Inmunoenzimas , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Fosfoproteínas Fosfatasas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Síndrome , Tirosina 3-Monooxigenasa/genética
12.
Semin Cell Dev Biol ; 21(8): 823-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20688183

RESUMEN

Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.


Asunto(s)
Modelos Animales de Enfermedad , Lisencefalia/genética , Lisencefalia/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/terapia , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Ratas
13.
J Biol Chem ; 286(3): 1959-65, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21036906

RESUMEN

LIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and restored dynein motility following suppression by LIS1. However, the molecular mechanisms and detailed interactions of dynein, LIS1, and NDEL1 remain unknown. In this study, we dissected the regulatory effects of LIS1 and NDEL1 on dynein motility using full-length or truncated recombinant fragments of LIS1 or NDEL1. The C-terminal fragment of NDEL1 dissociated dynein from MTs, whereas its N-terminal fragment restored dynein motility following suppression by LIS1, demonstrating that the two functions of NDEL1 localize to different parts of the NDEL1 molecule, and that restoration from LIS1 suppression is caused by the binding of NDEL1 to LIS1, rather than to dynein. The truncated monomeric form of LIS1 had little effect on dynein motility, but an artificial dimer of truncated LIS1 suppressed dynein motility, which was restored by the N-terminal fragment of NDEL1. This suggests that LIS1 dimerization is essential for its regulatory function. These results shed light on the molecular interactions between dynein, LIS1, and NDEL1, and the mechanisms of cytoplasmic dynein regulation.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Proteínas Portadoras/genética , Línea Celular , Citoplasma/genética , Dineínas/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Multimerización de Proteína , Porcinos
14.
EMBO J ; 27(19): 2471-83, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18784752

RESUMEN

LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Línea Celular , Dineínas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Neuronas/citología , Neuronas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Biochem Biophys Res Commun ; 425(2): 212-8, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22835934

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), the most common hereditary disease affecting the kidneys, is caused in 85% of cases by mutations in the PKD1 gene. The protein encoded by this gene, polycystin-1, is a renal epithelial cell membrane mechanoreceptor, sensing morphogenetic cues in the extracellular environment, which regulate the tissue architecture and differentiation. However, how such mutations result in the formation of cysts is still unclear. We performed a precise characterization of mesenchymal differentiation using PAX2, WNT4 and WT1 as a marker, which revealed that impairment of the differentiation process preceded the development of cysts in Pkd1(-/-) mice. We performed an in vitro organ culture and found that progesterone and a derivative thereof facilitated mesenchymal differentiation, and partially prevented the formation of cysts in Pkd1(-/-) kidneys. An injection of progesterone or this derivative into the intraperitoneal space of pregnant females also improved the survival of Pkd1(-/-) embryos. Our findings suggest that compounds which enhance mesenchymal differentiation in the nephrogenesis might be useful for the therapeutic approach to prevent the formation of cysts in ADPKD patients.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Quistes/prevención & control , Túbulos Renales/anomalías , Mesodermo/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/prevención & control , Progesterona/administración & dosificación , Animales , Quistes/embriología , Quistes/genética , Dilatación Patológica/embriología , Dilatación Patológica/prevención & control , Femenino , Mesodermo/citología , Ratones , Ratones Mutantes , Riñón Poliquístico Autosómico Dominante/embriología , Riñón Poliquístico Autosómico Dominante/genética , Embarazo , Canales Catiónicos TRPP/genética
16.
Neuropathology ; 32(4): 432-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22393875

RESUMEN

Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. Lissencephaly is characterized by a smooth cerebral surface, thick cortex and dilated lateral ventricles associated with mental retardation and seizures due to defective neuronal migration. Lissencephaly due to the heterozygous loss of the gene LIS1 is a good example of a haploinsufficiency disorder. LIS1 was deleted or mutated in a large proportion of patients with lissencephaly in a heterozygous fashion. A series of studies discovered that LIS1 is an essential regulator of cytoplasmic dynein. Notably, the role of LIS1 in regulating dynein activity is highly conserved among eukaryotes. In particular, we reported that LIS1 and NDEL1 are essential for dynein transport to the plus-end of microtubules by kinesin, which is essential to maintain the proper distribution of cytoplasmic dynein within the cell. In addition, we report that mNUDC (mammalian NUDC) interacts with kinesin-1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin-1. A microtubule organization and motor proteins are further modulated by post-translational modifications, including phosphorylation and palmitoylation. These modifications share a common pathway with mitotic cell division. For example, Aurora-A is activated during neurite elongation, and phosphorylates NDEL1, which facilitates microtubule extension into neurite processes. Elucidations of molecular pathways involving neuronal migrations provide us a chance to design a novel strategy for neurological disorder due to defective neuronal migration. For example, inhibition of calpain protects LIS1 from proteolysis resulting in the augmentation of LIS1 levels, which leads to rescue of the phenotypes that are observed in Lis1+/- mice. Endeavoring to address the regulation of the microtubule network and motor proteins will help in understanding not only corticogenesis but neurodegenerative disorders.


Asunto(s)
Corteza Cerebral , Dineínas/fisiología , Neurogénesis/fisiología , Animales , Proteína Doblecortina , Humanos
17.
Nat Commun ; 13(1): 6880, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371400

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Humanos , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Tirosina , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
18.
J Neurosci ; 30(8): 3002-12, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181597

RESUMEN

Heterozygous LIS1 mutations and males with loss of the X-linked DCX result in lissencephaly, a neuronal migration defect. LIS1 regulates nuclear translocation and mitotic division of neural progenitor cells, while the role of DCX in cortical development remains poorly understood. Here, we uncovered novel neuronal migration and proliferation defects in the Dcx mutant embryonic brains. Although cortical organization was fairly well preserved, Dcx(ko/Y) neurons displayed defective migration velocities similar to Lis1(+/ko) neurons when characterized by time-lapse video-microscopy of embryonic cortical slices. Dcx(ko/Y) migrating neurons displayed novel multidirectional movements with abnormal morphology and increased branching. Surprisingly, Dcx(ko/Y) radial glial cells displayed spindle orientation abnormalities similar to Lis1(+/ko) cells that in turn lead to moderate proliferation defects both in vivo and in vitro. We found functional genetic interaction of the two genes, with the combined effects of Lis1 haploinsufficiency and Dcx knock-out leading to more severe neuronal migration and proliferation phenotypes in the Lis1(+/ko);Dcx(ko/Y) male double mutant compared with the single mutants, resulting in cortical disorganization and depletion of the progenitor pool. Thus, we provide definitive evidence for a critical role for Dcx in neuronal migration and neurogenesis, as well as for the in vivo genetic interaction of the two genes most commonly involved in human neuronal migration defects.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Encéfalo/anomalías , Diferenciación Celular/genética , Movimiento Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/genética , Neuropéptidos/genética , Animales , Encéfalo/citología , Forma de la Célula/genética , Células Cultivadas , Corteza Cerebral/anomalías , Corteza Cerebral/citología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Malformaciones del Sistema Nervioso/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Esferoides Celulares , Células Madre/citología , Células Madre/metabolismo
19.
J Neurosci ; 29(49): 15520-30, 2009 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20007476

RESUMEN

Haploinsufficiency of LIS1 results in lissencephaly, a human neuronal migration disorder. LIS1 is a microtubule- (MT) and centrosome- [microtubule organizing center (MTOC)] associated protein that regulates nucleokinesis via the regulation of dynein motor function and localization. NDEL1 (NudE isoform, NudE like) interacts with LIS1/dynein complex, and is phosphorylated by CDK5/P35. Previous reports using siRNA-mediated knock-down demonstrated similar critical roles for LIS1 and NDEL1 during neuronal migration, but neuronal migration has not been studied in genetic mutants for Lis1 and Ndel1 where protein levels are uniform in all cells. Brains from mice with complete loss of Lis1 and Ndel1 displayed severe cortical layering and hippocampal defects, but Lis1 mutants had more severe defects. Neuronal migration speed was reduced and neurite lengths were elongated in proportion to the reduction of LIS1 and NDEL1 protein levels in embryonic day 14.5 mutant cortical slices compared to wild type, using two-photon confocal time lapse videomicroscopy. Additionally, mice with 35% of wild-type NDEL1 levels displayed diverse branched migration modes with multiple leading processes, suggesting defects in adhesion and/or polarity. Complete loss of Lis1 or Ndel1 resulted in the total inhibition of nuclear movement in cortical slice assays, and in neurosphere assays, the percentage of migrating neurons with correctly polarized MTOC location was significantly reduced while nuclear-centrosomal distance was extended. Neurite lengths were increased after complete loss Ndel1 but reduced after complete loss of Lis1. Thus, Lis1 and Ndel1 are essential for normal cortical neuronal migration, neurite outgrowth, and function of the MTOC in a dose-dependent manner.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuritas/fisiología , Neuronas/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/fisiología , Proteínas Portadoras/genética , Recuento de Células , Núcleo Celular/fisiología , Centrosoma/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/fisiología , Mutación , Neuronas/citología , Células Madre/citología , Células Madre/fisiología
20.
Mol Cell Biol ; 27(1): 352-67, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17060449

RESUMEN

NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Centrosoma/metabolismo , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasas , Movimiento Celular , Células HeLa , Humanos , Katanina , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Mitosis , Fosforilación , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA