Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ArXiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38800656

RESUMEN

In vivo in infection, virions are constantly produced and die rapidly. In contrast, most antibody binding assays do not include such features. Motivated by this, we considered virions with n=100 binding sites in simple mathematical models with and without the production of virions. In the absence of viral production, at steady state, the distribution of virions by the number of sites bound is given by a binomial distribution, with the proportion being a simple function of antibody affinity (Kon/Koff) and concentration; this generalizes to a multinomial distribution in the case of two or more kinds of antibodies. In the presence of viral production, the role of affinity is replaced by an infection analog of affinity (IAA), with IAA=Kon/(Koff+dv+r), where dv is the virus decaying rate and r is the infection growth rate. Because in vivo dv can be large, the amount of binding as well as the effect of Koff on binding are substantially reduced. When neutralization is added, the effect of Koff is similarly small which may help explain the relatively high Koff reported for many antibodies. We next show that the n+2-dimensional model used for neutralization can be simplified to a 2-dimensional model. This provides some justification for the simple models that have been used in practice. A corollary of our results is that an unexpectedly large effect of Koff in vivo may point to mechanisms of neutralization beyond stoichiometry. Our results suggest reporting Kon and Koff separately, rather than focusing on affinity, until the situation is better resolved both experimentally and theoretically.

2.
Sci Data ; 8(1): 253, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588463

RESUMEN

Quantifying the timing and content of policy changes affecting international travel and immigration is key to ongoing research on the spread of SARS-CoV-2 and the socioeconomic impacts of border closures. The COVID Border Accountability Project (COBAP) provides a hand-coded dataset of >1000 policies systematized to reflect a complete timeline of country-level restrictions on movement across international borders during 2020. Trained research assistants used pre-set definitions to source, categorize and verify for each new border policy: start and end dates, whether the closure is "complete" or "partial", which exceptions are made, which countries are banned, and which air/land/sea borders were closed. COBAP verified the database through internal and external audits from public health experts. For purposes of further verification and future data mining efforts of pandemic research, the full text of each policy was archived. The structure of the COBAP dataset is designed for use by social and biomedical scientists. For broad accessibility to policymakers and the public, our website depicts the data in an interactive, user-friendly, time-based map.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles/legislación & jurisprudencia , Pandemias/prevención & control , Viaje/legislación & jurisprudencia , COVID-19/epidemiología , Política de Salud , Humanos , Internacionalidad , Responsabilidad Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA