Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(6): 062501, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34420321

RESUMEN

The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, N_{c}. However this large-N_{c} symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale that we call Λ_{large-N_{c}}. We show that the large-N_{c} derivation requires a momentum resolution scale of Λ_{large-N_{c}}∼500 MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the spectrum of ^{30}P and applications to nuclear forces, nuclear structure calculations, and three-nucleon interactions.

2.
J Chem Phys ; 147(16): 164109, 2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29096509

RESUMEN

We present and compare several many-body methods as applied to two-dimensional quantum dots with circular symmetry. We calculate the approximate ground state energy using a harmonic oscillator basis optimized by Hartree-Fock (HF) theory and further improve the ground state energy using two post-HF methods: in-medium similarity renormalization group and coupled cluster with singles and doubles. With the application of quasidegenerate perturbation theory or the equations-of-motion method to the results of the previous two methods, we obtain addition and removal energies as well. Our results are benchmarked against full configuration interaction and diffusion Monte Carlo where available. We examine the rate of convergence and perform extrapolations to the infinite basis limit using a power-law model.

3.
Phys Rev E ; 107(2-2): 025310, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932590

RESUMEN

We present a variational Monte Carlo method that solves the nuclear many-body problem in the occupation number formalism exploiting an artificial neural network representation of the ground-state wave function. A memory-efficient version of the stochastic reconfiguration algorithm is developed to train the network by minimizing the expectation value of the Hamiltonian. We benchmark this approach against widely used nuclear many-body methods by solving a model used to describe pairing in nuclei for different types of interaction and different values of the interaction strength. Despite its polynomial computational cost, our method outperforms coupled-cluster and provides energies that are in excellent agreement with the numerically exact full configuration-interaction values.

4.
Phys Rev Lett ; 104(1): 012501, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20366360

RESUMEN

Novel simple properties of the monopole component of effective nucleon-nucleon interactions are presented, leading to the so-called monopole-based universal interaction. Shell structures are shown to change as functions of N and Z, consistent with experiments. Some key cases of this shell evolution are discussed, clarifying the effects of central and tensor forces. The validity of the present tensor force is examined in terms of the low-momentum interaction V(lowk) and the Q(box) formalism.

5.
PLoS One ; 15(11): e0242334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33186404

RESUMEN

The time it takes a student to graduate with a university degree is mitigated by a variety of factors such as their background, the academic performance at university, and their integration into the social communities of the university they attend. Different universities have different populations, student services, instruction styles, and degree programs, however, they all collect institutional data. This study presents data for 160,933 students attending a large American research university. The data includes performance, enrollment, demographics, and preparation features. Discrete time hazard models for the time-to-graduation are presented in the context of Tinto's Theory of Drop Out. Additionally, a novel machine learning method: gradient boosted trees, is applied and compared to the typical maximum likelihood method. We demonstrate that enrollment factors (such as changing a major) lead to greater increases in model predictive performance of when a student graduates than performance factors (such as grades) or preparation (such as high school GPA).


Asunto(s)
Escolaridad , Universidades/estadística & datos numéricos , Adulto , Femenino , Humanos , Funciones de Verosimilitud , Modelos Logísticos , Masculino , Factores de Tiempo , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA