Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Microbiol ; 79(2): 57, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982247

RESUMEN

Leptospirosis is a worldwide zoonosis and a serious public health threat in tropical and subtropical areas. The etiologic agents of leptospirosis are pathogenic spirochetes from the genus Leptospira. In severe cases, patients develop a pulmonary hemorrhage that is associated with high fatality rates. Several animal models were established for leptospirosis studies, such as rodents, dogs, and monkeys. Although useful to study the relationship among Leptospira and its hosts, the animal models still exhibit economic and ethical limitation reasons and do not fully represent the human infection. As an attempt to bridge the gap between animal studies and clinical information from patients, we established a three-dimensional (3-D) human lung cell culture for Leptospira infection. We show that Leptospira is able to efficiently infect the cell lung spheroids and also to infiltrate in deeper areas of the cell aggregates. The ability to infect the 3-D lung cell aggregates was time-dependent. The 3-D spheroids infection occurred up to 120 h in studies with two serovars, Canicola and Copenhageni. We standardized the number of bacteria in the initial inoculum for infection of the spheroids and we also propose two alternative culture media conditions. This new approach was validated by assessing the expression of three genes of Leptospira related to virulence and motility. The transcripts of these genes increased in both culture conditions, however, in higher rates and earlier times in the 3-D culture. We also assessed the production of chemokines by the 3-D spheroids before and after Leptospira infection, confirming induction of two of them, mainly in the 3-D spheroids. Chemokine CCL2 was expressed only in the 3-D cell culture. Increasing of this chemokine was observed previously in infected animal models. This new approach provides an opportunity to study the interaction of Leptospira with the human lung epithelium in vitro.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Leptospira , Leptospirosis , Animales , Humanos , Leptospirosis/veterinaria , Pulmón , Virulencia
2.
Nucleic Acids Res ; 44(3): 1179-91, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26762976

RESUMEN

We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.


Asunto(s)
Proteínas Bacterianas/genética , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/genética , Leptospira interrogans/genética , Serina Endopeptidasas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , División Celular/genética , Inmunoprecipitación de Cromatina , Cromosomas Bacterianos/genética , Daño del ADN , Reparación del ADN/genética , Metabolismo Energético/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Leptospira interrogans/metabolismo , Leptospira interrogans/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Respuesta SOS en Genética/genética , Análisis de Secuencia de ADN , Serina Endopeptidasas/metabolismo , Rayos Ultravioleta
3.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056544

RESUMEN

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Ratones , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Células HEK293 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Ratones Endogámicos BALB C , Femenino , Multimerización de Proteína , Dominios Proteicos/inmunología , Unión Proteica
4.
Nat Genet ; 35(2): 148-57, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12973350

RESUMEN

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Asunto(s)
Schistosoma mansoni/genética , Transcripción Genética , Animales , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Genes de Helminto , Proteínas del Helminto/genética , Humanos , Datos de Secuencia Molecular , Schistosoma mansoni/patogenicidad , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/parasitología
5.
J Proteome Res ; 11(2): 1152-62, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22168127

RESUMEN

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Asunto(s)
Colubridae/metabolismo , Metaloproteinasas de la Matriz/química , Proteoma/química , Proteómica/métodos , Venenos de Serpiente/química , Secuencia de Aminoácidos , Animales , Metaloproteinasas de la Matriz/clasificación , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Proteoma/clasificación , Alineación de Secuencia , Venenos de Serpiente/antagonistas & inhibidores , Venenos de Serpiente/clasificación , Venenos de Serpiente/metabolismo , Transcriptoma
6.
Microb Pathog ; 53(5-6): 243-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22981893

RESUMEN

Pneumococcal surface protein A (PspA) is an important candidate for a vaccine against pneumococcal infections. DNA vaccines expressing PspA were shown to protect mice against intraperitoneal and colonization challenge models in mice. We now show that a DNA vaccine expressing PspA from clade 4 (pSec-pspA4Pro) is also able to elicit protection against an intranasal lethal challenge model at levels similar to the recombinant protein PspA4Pro adjuvanted with alum. PspA4Pro + alum induced an IgG response characterized by a high IgG1/IgG2a ratio, leading to a lack of binding of anti-PspA IgG2a antibodies to intact pneumococci in vitro, which is in contrast to the response elicited by pSec-pspA4Pro. Epitopes recognized by the sera were mapped and antibodies induced by immunization with PspA4Pro + alum showed positive reaction with several synthetic peptides, mostly located in the first half of the protein. On the other hand, antibodies induced by the DNA vaccine showed reactivity with only two peptides. Though both strategies were protective against the intranasal lethal challenge model, the elicited humoral responses differ significantly, with the detection of important differences in the Fc (IgG1/IgG2a ratios) and Fab (recognized epitopes) regions of the induced antibodies.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Mapeo Epitopo , Femenino , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
7.
Proteomics ; 11(21): 4218-28, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21928397

RESUMEN

The pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Similarly, the diet of this species changes from ectothermic prey in early life to endothermic prey in adulthood. In this study we used large and representative newborn and adult venom samples consisting of pools from 694 and 110 specimens, respectively, and demonstrate a significant ontogenetic shift in the venom proteome complexity of B. jararaca. 2-DE coupled to MS protein identification showed a clear rearrangement of the toxin arsenal both in terms of the total proteome, as of the glycoproteome. N-glycosylation seems to play a key role in venom protein variability between newborn and adult specimens. Upon the snake development, the subproteome of metalloproteinases undergoes a shift from a P-III-rich to a P-I-rich profile while the serine proteinase profile does not vary significantly. We also used isobaric tag labeling (iTRAQ) of venom tryptic peptides for the first time to examine the quantitative changes in the venom toxins of B. jararaca upon neonate to adult transition. The iTRAQ analysis showed changes in various toxin classes, especially the proteinases. Our study expands the in-depth understanding of venom complexity variation particularly with regard to toxin families that have been associated with envenomation pathogenesis.


Asunto(s)
Bothrops/crecimiento & desarrollo , Venenos de Crotálidos/metabolismo , Proteoma/metabolismo , Proteínas de Reptiles/metabolismo , Animales , Bothrops/metabolismo , Glicosilación , Espectrometría de Masas , Proteómica
8.
Curr Microbiol ; 62(2): 518-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20721667

RESUMEN

Leptospirosis is an important epidemic zoonosis worldwide. Currently, there are more than 250 Leptospira pathogenic serovars known that can potentially infect humans. Conventional classification of leptospires with the serovar as the basic taxon, based on serological recognition of lipopolysaccharide (LPS) composition does not correlate well with species determination, based on general genomic features. Here, we investigate the selective amplification of polymorphic regions from the LPS biosynthesis loci (rfb) as a potential tool for serovar typing of Leptospira interrogans species. Eight pairs of primers were designed to target six ORFs from the rfb operon with varying levels of sequence polymorphism. They were tested both separately and multiplexed. Half of these primer pairs produced serovar-specific amplicons, allowing the identification of some specific serovars and also groups of serovars. It was shown that the serovar classification of Leptospira can be accessed by selective amplification of rfb operons in some cases, which may permit a parallel between the serological and the genomic classifications of Leptospira. As a conclusion, the selective amplification of rfb generated promising and already useful results, but it appears necessary to characterize a larger variety of Leptospira genomes or rfb operons to fully develop this method.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Leptospira interrogans/clasificación , Leptospira interrogans/genética , Lipopolisacáridos/genética , Tipificación Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Cartilla de ADN/genética , Genotipo , Humanos , Leptospirosis/microbiología , Polimorfismo Genético
9.
Curr Microbiol ; 62(2): 526-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20721666

RESUMEN

Leptospirosis is one of the most widespread zoonosis in the world. The development of a recombinant leptospira vaccine remains a challenge. In this study, we cloned the Leptospira interrogans open reading frame (ORF) coding the external membrane protein LipL32, an immunodominant antigen found in all pathogenic leptospira, downstream of the highly immunogenic cholera toxin B subunit (CTB) ORF. Expression and assembly of the CTB-LipL32 fusion protein into oligomeric structures of pentameric size were observed in soluble fractions by Western blot analysis. The CTB-LipL32 protein demonstrated strong affinity for monosialotetrahexosylgaglioside (GM1-ganglioside) in an enzyme-linked immunosorbent assay (ELISA), suggesting that the antigenic sites for binding and proper folding of the pentameric CTB structure were conserved. Furthermore, antisera against LipL32 also recognized the CTB-LipL32 fusion protein, suggesting that LipL32 also conserved its antigenic sites, a fact confirmed by an ELISA assay showing soluble CTB-LipL32 recognition by sera from convalescent patients. In addition, soluble CTB-LipL32 generated higher specific titers in mice immunized without external adjuvant than co-administration of CTB with LipL32. The data presented here provide support for CTB-LipL32 as a promising antigen for use in the control and study of leptospirosis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Toxina del Cólera/inmunología , Leptospira interrogans/inmunología , Lipoproteínas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas/genética , Western Blotting , Toxina del Cólera/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Gangliósido G(M1)/metabolismo , Leptospira interrogans/genética , Lipoproteínas/genética , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
10.
J Proteome Res ; 9(5): 2278-91, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20146532

RESUMEN

Previous studies have demonstrated that the pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Variation in the venom proteome is a well-documented phenomenon; however, variation in the venom peptidome is poorly understood. We report a comparative proteomic and peptidomic analysis of venoms from newborn and adult specimens of B. jararaca and correlate it with the evaluation of important venom features. We demonstrate that newborn and adult venoms have similar hemorrhagic activities, while the adult venom has a slightly higher lethal activity in mice; however, the newborn venom is extremely more potent to kill chicks. The coagulant activity of newborn venom upon human plasma is 10 times higher than that of adult venom. These differences were clearly reflected in their different profiles of SDS-PAGE, gelatin zimography, immunostaining using specific antibodies, glycosylation pattern, and concanavalin A-binding proteins. Furthermore, we report for the first time the analysis of the peptide fraction of newborn and adult venoms by MALDI-TOF mass spectrometry and LC-MS/MS, which revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles and were detected in the venoms showing their canonical sequences and also novel sequences corresponding to BPPs processed from their precursor protein at sites so far not described. As a result of these studies, we demonstrated that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and in animal size are associated with changes in the venom proteome in B. jararaca species.


Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/química , Proteoma/análisis , Proteómica/métodos , Animales , Animales Recién Nacidos , Coagulación Sanguínea/efectos de los fármacos , Factores de Coagulación Sanguínea/metabolismo , Western Blotting , Caseínas/metabolismo , Pollos , Venenos de Crotálidos/metabolismo , Venenos de Crotálidos/farmacología , Electroforesis en Gel de Poliacrilamida , Femenino , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Humanos , Masculino , Ratones , Oligopéptidos/metabolismo , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Microb Pathog ; 48(6): 205-13, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20206678

RESUMEN

Pneumococcal surface protein A (PspA) is an important candidate for a cost-effective vaccine with broad coverage against Streptococcus pneumoniae. We have previously shown that intramuscular immunization with PspA as a DNA vaccine induces an immune response characterized by the induction of a balanced IgG1/IgG2a antibody response in BALB/c mice, which was able to efficiently mediate complement deposition onto intact bacteria and to induce protection against an intraperitoneal challenge. We now confirm the results in C57BL/6 mice and further show that the response induced by the DNA vaccine expressing PspA is able to mediate protection against colonization of the nasopharyngeal mucosa even though immunization was given parenterally. Moreover, a positive correlation was observed between IgG1 and the numbers of CFU recovered, whereas an inverse correlation was observed between nasal CFU levels and IgG2a. A positive correlation was also found for IgG1/IgG2a antibody ratios with CFU recovered from the nasopharynx. Therefore, reduction of nasal colonization was strongly associated with increased levels of serum IgG2a complement fixing antibody and low levels of IgG1 antibody which has much less complement fixing activity. Passive transfer of serum from animals immunized with the DNA vaccine expressing PspA was also able to reduce the fraction of mice with high density of colonization of the nasopharynx. Secretion of IFN-gamma, but not IL-17, was observed in splenocytes from mice immunized with the DNA vaccine.


Asunto(s)
Proteínas Bacterianas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Formación de Anticuerpos , Activación de Complemento/inmunología , Femenino , Inmunización , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nasofaringe/inmunología , Nasofaringe/microbiología , Infecciones Neumocócicas/inmunología , Bazo/citología , Bazo/inmunología
12.
Curr Microbiol ; 60(2): 134-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19826861

RESUMEN

Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.


Asunto(s)
Proteínas Bacterianas/inmunología , Regulación Enzimológica de la Expresión Génica , Leptospira interrogans/enzimología , Leptospira interrogans/genética , Leptospirosis/inmunología , Esfingomielina Fosfodiesterasa/inmunología , Animales , Proteínas Bacterianas/genética , Cricetinae , Regulación Bacteriana de la Expresión Génica , Humanos , Leptospira interrogans/crecimiento & desarrollo , Leptospirosis/microbiología , Ovinos , Esfingomielina Fosfodiesterasa/genética
14.
PLoS One ; 15(1): e0228055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945121

RESUMEN

Pneumococcal Surface Protein A (PspA) has been successfully tested as vaccine candidate against Streptococcus pneumoniae infections. Vaccines able to induce PspA-specific antibodies and Th1 cytokines usually provide protection in mice. We have shown that the whole cell pertussis vaccine (wP) or components from acellular pertussis vaccines, such as Pertussis Toxin or Filamentous Hemagglutinin (FHA), are good adjuvants to PspA, suggesting that combined pertussis-PspA vaccines would be interesting strategies against the two infections. Here, we evaluated the potential of wP as a delivery vector to PspA. Bordetella pertussis strains producing a PspA from clade 4 (PspA4Pro) fused to the N-terminal region of FHA (Fha44) were constructed and inactivated with formaldehyde for the production of wPPspA4Pro. Subcutaneous immunization of mice with wPPspA4Pro induced low levels of anti-PspA4 IgG, even after 3 doses, and did not protect against a lethal pneumococcal challenge. Prime-boost strategies using wPPspA4Pro and PspA4Pro showed that there was no advantage in using the wPPspA4Pro vaccine. Immunization of mice with purified PspA4Pro induced higher levels of antibodies and protection against pneumococcal infection than the prime-boost strategies. Finally, purified Fha44:PspA4Pro induced high levels of anti-PspA4Pro IgG, but no protection, suggesting that the antibodies induced by the fusion protein were not directed to protective epitopes.


Asunto(s)
Adhesinas Bacterianas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Proteínas Bacterianas/farmacología , Vacuna contra la Tos Ferina/administración & dosificación , Infecciones Neumocócicas/prevención & control , Factores de Virulencia de Bordetella/administración & dosificación , Animales , Antígenos Bacterianos/farmacología , Antígenos de Superficie/farmacología , Portadores de Fármacos/administración & dosificación , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunación
15.
PLoS One ; 15(3): e0230460, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218590

RESUMEN

Pathogenic spirochetes from genus Leptospira are etiologic agents of leptospirosis. Cellular vaccines against Leptospira infection often elicit mainly response against the LPS antigen of the serovars present in the formulation. There is no suitable protein candidate capable of replacing whole-cell vaccines, thus requiring new approaches on vaccine development to improve leptospirosis prevention. Our goal was to develop a whole-cell vaccine sorovar-independent based on LPS removal and conservation of protein antigens exposure, to evaluate the protective capacity of monovalent or bivalent vaccines against homologous and heterologous virulent Leptospira in hamster. Leptospire were subjected to heat inactivation, or to LPS extraction with butanol and in some cases further inactivation with formaldehyde. Hamsters were immunized and challenged with homologous or heterologous virulent serovars, blood and organs were collected from the survivors for bacterial quantification, chemokine evaluation, and analysis of sera antibody reactivity and cross-reactivity by Western blot. Immunization with either heated or low LPS vaccines with serovar Copenhageni or Canicola resulted in 100% protection of the animals challenged with homologous virulent bacteria. Notably, different from the whole-cell vaccine, the low LPS vaccines produced with serovar Canicola provided only partial protection in heterologous challenge with the virulent Copenhageni serovar. Immunization with bivalent formulation results in 100% protection of immunized animals challenged with virulent serovar Canicola. All vaccines produced were able to eliminate bacteria from the kidney of challenged animals. All the vaccines raised antibodies capable to recognize antigens of serovars not present in the vaccine formulation. Transcripts of IFNγ, CXCL16, CCL5, CXCL10, CXCR6, and CCR5, increased in all immunized animals. Conclusion: Our results showed that bivalent vaccines with reduced LPS may be an interesting strategy for protection against heterologous virulent serovars. Besides the desirable multivalent protection, the low LPS vaccines are specially promising due to the expected lower reatogenicity.


Asunto(s)
Vacunas Bacterianas , Leptospira/inmunología , Leptospirosis/inmunología , Lipopolisacáridos/química , Vacunación , Animales , Anticuerpos Antibacterianos/inmunología , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Cricetinae , Leptospira/química , Leptospirosis/prevención & control
16.
Sci Signal ; 13(635)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518143

RESUMEN

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.


Asunto(s)
Encéfalo , Colágeno , Matriz Extracelular , Polimorfismo de Nucleótido Simple , Infección por el Virus Zika , Virus Zika , Encéfalo/metabolismo , Encéfalo/patología , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Síndrome , Infección por el Virus Zika/congénito , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
17.
Proteomics ; 9(3): 733-45, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19137556

RESUMEN

Viperid snakes show the most complex snake-venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2-DE, and their subproteomes of proteinases were explored by 2-D immunostaining and 2-D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti-coagulant and anti-inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high-affinity for heparin as composed of mainly serine proteinases and C-type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin-binding toxins. Only the non-bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin-bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Bothrops/metabolismo , Proteínas Portadoras/metabolismo , Venenos de Crotálidos/metabolismo , Heparina/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Cromatografía de Afinidad , Electroforesis en Gel Bidimensional , Immunoblotting
18.
BMC Genomics ; 10: 112, 2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19291316

RESUMEN

BACKGROUND: Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. RESULTS: A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A(2) (PLA(2)s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA(2)) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. CONCLUSION: Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a viable alternative. In fact, the selected candidates provided an initial evidence of the feasibility of this approach, which is less costly and not dependent on the availability of the venom.


Asunto(s)
Venenos Elapídicos/genética , Elapidae/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Antígenos/inmunología , Antivenenos , Análisis por Conglomerados , Venenos Elapídicos/inmunología , Femenino , Biblioteca de Genes , Sueros Inmunes/análisis , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Vacunas de ADN/inmunología
19.
Microb Pathog ; 47(3): 157-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19467320

RESUMEN

The differences between the immune response elicited during a self-limiting and a life-threatening lung infection with Streptococcus pneumoniae was analyzed in a mouse model of intranasal challenge using two different pneumococcal strains. M10, a serotype 11A strain, induced an early response within the first 12h after the challenge, which was characterized by the early local secretion of TNF-alpha and IL-6, followed by a sharp and rapid neutrophil influx. Bacterial loads in the lungs already started to fall at 12h after the challenge and no pneumococci could be recovered after 36h, at the time point when the animals started to show improvement in disease symptoms. ATCC6303, a serotype 3 strain, on the other hand, showed only a late increase in local TNF-alpha and IL-6 levels, when bacterial growth already seems to be out of control. Although cell influx was also observed, neutrophil rise was not as marked as with M10 (type 11A). Pneumococcal loads increased constantly and bacteria started to be recovered from the blood at 30h after the challenge. After this time point, animals showed worsening of symptoms and became lethargic. The resolution of the acute infection could be thus correlated with the early induction of proinflammatory cytokines, which could be due to the presence of a thinner polysaccharide capsule in M10 (type 11A), rendering bacterial components capable of activating the innate immune response more accessible.


Asunto(s)
Pulmón/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/patogenicidad , Animales , Femenino , Humanos , Interleucina-6/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/inmunología , Factor de Necrosis Tumoral alfa/inmunología
20.
Artículo en Inglés | MEDLINE | ID: mdl-19255491

RESUMEN

LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 A resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 A.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Leptospira interrogans/química , Leptospira interrogans/clasificación , Lipoproteínas/química , Cristalización , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA