Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417861

RESUMEN

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Asunto(s)
Cognición/fisiología , Suturas Craneales/fisiopatología , Craneosinostosis/fisiopatología , Regeneración/fisiología , Cráneo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Craneosinostosis/genética , Duramadre/patología , Duramadre/fisiopatología , Gelatina/farmacología , Perfilación de la Expresión Génica , Fuerza de la Mano , Presión Intracraneal/efectos de los fármacos , Presión Intracraneal/fisiología , Locomoción/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Metacrilatos/farmacología , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Regeneración/efectos de los fármacos , Cráneo/patología , Proteína 1 Relacionada con Twist/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
2.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38108472

RESUMEN

Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.


Asunto(s)
Diente , Animales , Ratones , Diente Molar , Morfogénesis/genética , Odontogénesis/genética , Raíz del Diente
3.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825984

RESUMEN

Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;ß-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;ß-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.


Asunto(s)
Fisura del Paladar , Vía de Señalización Wnt , Ratones , Animales , Vía de Señalización Wnt/fisiología , Hueso Paladar , Fisura del Paladar/genética , Diferenciación Celular , Paladar Blando , Homeostasis , Regulación del Desarrollo de la Expresión Génica
4.
Development ; 148(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33323370

RESUMEN

The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering.


Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Raíz del Diente/embriología , Raíz del Diente/metabolismo , Vía de Señalización Wnt , Proteína de Unión al GTP cdc42/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Masculino , Mesodermo/embriología , Ratones , Ratones Mutantes , Morfogénesis , Odontoblastos/citología , Odontoblastos/metabolismo , Raíz del Diente/citología
5.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33766930

RESUMEN

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Unión al ADN/metabolismo , Incisivo/embriología , Células Madre Mesenquimatosas/metabolismo , Mitosis , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Aurora Quinasa A/genética , Proteína Quinasa CDC2/genética , Proteínas de Unión al ADN/genética , Ratones , Ratones Transgénicos , Factores de Transcripción/genética
6.
PLoS Genet ; 17(2): e1009320, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596195

RESUMEN

Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Células Madre Mesenquimatosas/metabolismo , Diente Molar/metabolismo , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Raíz del Diente/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Femenino , Proteínas con Homeodominio LIM/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Diente Molar/citología , Diente Molar/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Raíz del Diente/citología , Raíz del Diente/crecimiento & desarrollo , Factores de Transcripción/metabolismo
7.
Development ; 147(18)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958507

RESUMEN

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Asunto(s)
Investigación Dental/métodos , Huesos Faciales/fisiología , Cráneo/fisiología , Animales , Bases de Datos Factuales , Humanos , Reproducibilidad de los Resultados , Investigadores
8.
Dev Biol ; 441(1): 191-203, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29981310

RESUMEN

Cleft palate is one of the most common craniofacial congenital defects in humans. It is associated with multiple genetic and environmental risk factors, including mutations in the genes encoding signaling molecules in the sonic hedgehog (Shh) pathway, which are risk factors for cleft palate in both humans and mice. However, the function of Shh signaling in the palatal epithelium during palatal fusion remains largely unknown. Although components of the Shh pathway are localized in the palatal epithelium, specific inhibition of Shh signaling in palatal epithelium does not affect palatogenesis. We therefore utilized a hedgehog (Hh) signaling gain-of-function mouse model, K14-Cre;R26SmoM2, to uncover the role of Shh signaling in the palatal epithelium during palatal fusion. In this study, we discovered that constitutive activation of Hh signaling in the palatal epithelium results in submucous cleft palate and persistence of the medial edge epithelium (MEE). Further investigation revealed that precise downregulation of Shh signaling is required at a specific time point in the MEE during palatal fusion. Upregulation of Hh signaling in the palatal epithelium maintains the proliferation of MEE cells. This may be due to a dysfunctional p63/Irf6 regulatory loop. The resistance of MEE cells to apoptosis is likely conferred by enhancement of a cell adhesion network through the maintenance of p63 expression. Collectively, our data illustrate that persistent Hh signaling in the palatal epithelium contributes to the etiology and pathogenesis of submucous cleft palate through its interaction with a p63/Irf6-dependent biological regulatory loop and through a p63-induced cell adhesion network.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Epiteliales/metabolismo , Proteínas Hedgehog/metabolismo , Hueso Paladar/embriología , Transducción de Señal/fisiología , Animales , Adhesión Celular/fisiología , Embrión de Mamíferos/citología , Células Epiteliales/citología , Proteínas Hedgehog/genética , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Transgénicos , Hueso Paladar/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Hum Mol Genet ; 26(5): 860-872, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069795

RESUMEN

Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.


Asunto(s)
Labio Leporino/genética , Desarrollo Embrionario/genética , Proteínas Supresoras de Tumor/genética , Proteína Wnt1/genética , Animales , Proliferación Celular/genética , Labio Leporino/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/crecimiento & desarrollo , Mesodermo/patología , Ratones , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Cresta Neural/patología , Hueso Paladar/crecimiento & desarrollo , Hueso Paladar/patología , Transducción de Señal , Proteínas Supresoras de Tumor/biosíntesis , Proteína Wnt1/biosíntesis
10.
Development ; 142(19): 3374-82, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26293299

RESUMEN

Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Morfogénesis/fisiología , Factores de Transcripción NFI/metabolismo , Transducción de Señal/fisiología , Raíz del Diente/crecimiento & desarrollo , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Galactósidos , Hibridación in Situ , Indoles , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Diente Molar/crecimiento & desarrollo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Tamoxifeno , Microtomografía por Rayos X , Proteína con Dedos de Zinc GLI1
11.
Development ; 141(4): 909-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496627

RESUMEN

Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFß signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2(fl/fl);K14-Cre mice. Specifically, muscle mass was decreased in the soft palates of Tgfbr2 mutant mice, following defects in cell proliferation and differentiation. Gene expression of Dickkopf (Dkk1 and Dkk4), negative regulators of WNT-ß-catenin signaling, is upregulated in the soft palate of Tgfbr2(fl/fl);K14-Cre mice, and WNT-ß-catenin signaling is disrupted in the palatal mesenchyme. Importantly, blocking the function of DKK1 and DKK4 rescued the cell proliferation and differentiation defects in the soft palate of Tgfbr2(fl/fl);K14-Cre mice. Thus, our findings indicate that loss of TGFß signaling in epithelial cells compromises activation of WNT signaling and proper muscle development in the soft palate through tissue-tissue interactions, resulting in a cleft soft palate. This information has important implications for prevention and non-surgical correction of cleft soft palate.


Asunto(s)
Fisura del Paladar/fisiopatología , Transición Epitelial-Mesenquimal/fisiología , Músculo Esquelético/embriología , Paladar Blando/embriología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Fisura del Paladar/etiología , Cartilla de ADN/genética , Imagenología Tridimensional , Immunoblotting , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Microtomografía por Rayos X
12.
Dev Biol ; 400(2): 180-90, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25722190

RESUMEN

Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFß) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFß signaling is activated whereas canonical TGFß signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFß signaling. However, the relative involvement of canonical and non-canonical TGFß signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFß signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.


Asunto(s)
Desarrollo Óseo , Huesos Faciales/embriología , Cráneo/embriología , Animales , Huesos Faciales/anatomía & histología , Imagenología Tridimensional , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Microtomografía por Rayos X
13.
Hum Mol Genet ; 23(1): 182-93, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23975680

RESUMEN

Mutations in transforming growth factor beta (TGFß) receptor type II (TGFBR2) cause Loeys-Dietz syndrome, characterized by craniofacial and cardiovascular abnormalities. Mice with a deletion of Tgfbr2 in cranial neural crest cells (Tgfbr2(fl/fl);Wnt1-Cre mice) develop cleft palate as the result of abnormal TGFß signaling activation. However, little is known about metabolic processes downstream of TGFß signaling during palatogenesis. Here, we show that Tgfbr2 mutant palatal mesenchymal cells spontaneously accumulate lipid droplets, resulting from reduced lipolysis activity. Tgfbr2 mutant palatal mesenchymal cells failed to respond to the cell proliferation stimulator sonic hedgehog, derived from the palatal epithelium. Treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor or telmisartan, a modulator of p38 MAPK activation and lipid metabolism, blocked abnormal TGFß-mediated p38 MAPK activation, restoring lipid metabolism and cell proliferation activity both in vitro and in vivo. Our results highlight the influence of alternative TGFß signaling on lipid metabolic activities, as well as how lipid metabolic defects can affect cell proliferation and adversely impact palatogenesis. This discovery has broader implications for the understanding of metabolic defects and potential prevention of congenital birth defects.


Asunto(s)
Bencimidazoles/farmacología , Benzoatos/farmacología , Fisura del Paladar/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Fisura del Paladar/embriología , Fisura del Paladar/patología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Telmisartán , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Development ; 140(6): 1220-30, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23406900

RESUMEN

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFß) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFß signaling and IRF6 activity during palate formation. Here, we show that TGFß signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFß signaling mediator Smad4 (Smad4(fl/fl);K14-Cre;Irf6(+/R84C)) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2(fl/fl);K14-Cre mice, although the secondary palate of Irf6(+/R84C) and Smad4(fl/fl);K14-Cre mice form normally. Furthermore, Smad4(fl/fl);K14-Cre;Irf6(+/R84C) mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFß/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2(fl/fl);K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFß-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice.


Asunto(s)
Epistasis Genética , Factores Reguladores del Interferón/genética , Hueso Paladar/embriología , Proteína Smad4/genética , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Fusión Celular , Células Cultivadas , Embrión de Mamíferos , Epistasis Genética/efectos de los fármacos , Epistasis Genética/fisiología , Femenino , Humanos , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organogénesis/efectos de los fármacos , Organogénesis/genética , Hueso Paladar/efectos de los fármacos , Hueso Paladar/metabolismo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(51): 20853-8, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213213

RESUMEN

One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-ß-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation.


Asunto(s)
Benzamidas/farmacología , Reprogramación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Piridinas/farmacología , Pirroles/farmacología , Animales , Benzamidas/química , Diferenciación Celular , Química Farmacéutica/métodos , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Diseño de Fármacos , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Oxigenasas de Función Mixta , Proteína Homeótica Nanog , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/química , Pirroles/química , Factores de Transcripción SOXB1/metabolismo
16.
J Biol Chem ; 288(41): 29760-70, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23950180

RESUMEN

Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor ß (TGFß) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFß signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFß-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFß-mediated regulation of FGF and BMP signaling during tongue development.


Asunto(s)
Músculos/metabolismo , Cresta Neural/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Lengua/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor 4 de Crecimiento de Fibroblastos/farmacología , Folistatina/genética , Folistatina/metabolismo , Folistatina/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Immunoblotting , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Músculos/embriología , Cresta Neural/citología , Cresta Neural/embriología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cráneo/embriología , Cráneo/metabolismo , Lengua/citología , Lengua/embriología , Factor de Crecimiento Transformador beta/farmacología
17.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915513

RESUMEN

IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation. Several reports have also described Irf6 gene expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cell lineages has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.

18.
Cell Stem Cell ; 31(6): 904-920.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38703771

RESUMEN

Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.


Asunto(s)
Incisivo , Células Madre Mesenquimatosas , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Incisivo/citología , Incisivo/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
19.
Nat Commun ; 15(1): 4614, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816354

RESUMEN

ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.


Asunto(s)
Proteínas de Unión al ADN , Células Madre Mesenquimatosas , Proteínas Represoras , Transducción de Señal , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proliferación Celular , Activinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Humanos , Proteína con Dedos de Zinc GLI1
20.
Bone Res ; 12(1): 37, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910207

RESUMEN

Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1+ progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-CreER;Fgfr1fl/fl mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Mecanotransducción Celular , Raíz del Diente , Vía de Señalización Wnt , Animales , Vía de Señalización Wnt/fisiología , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , Raíz del Diente/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Diferenciación Celular , Células Madre/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Canales Iónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA