Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283123

RESUMEN

Most indoor environments have wheelchair adaptations or ramps, providing an opportunity for mobile robots to navigate sloped areas avoiding steps. These indoor environments with integrated sloped areas are divided into different levels. The multi-level areas represent a challenge for mobile robot navigation due to the sudden change in reference sensors as visual, inertial, or laser scan instruments. Using multiple cooperative robots is advantageous for mapping and localization since they permit rapid exploration of the environment and provide higher redundancy than using a single robot. This study proposes a multi-robot localization using two robots (leader and follower) to perform a fast and robust environment exploration on multi-level areas. The leader robot is equipped with a 3D LIDAR for 2.5D mapping and a Kinect camera for RGB image acquisition. Using 3D LIDAR, the leader robot obtains information for particle localization, with particles sampled from the walls and obstacle tangents. We employ a convolutional neural network on the RGB images for multi-level area detection. Once the leader robot detects a multi-level area, it generates a path and sends a notification to the follower robot to go into the detected location. The follower robot utilizes a 2D LIDAR to explore the boundaries of the even areas and generate a 2D map using an extension of the iterative closest point. The 2D map is utilized as a re-localization resource in case of failure of the leader robot.


Asunto(s)
Robótica , Silla de Ruedas , Algoritmos , Método de Montecarlo , Redes Neurales de la Computación
2.
Sensors (Basel) ; 21(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499320

RESUMEN

Underwater vehicles (UVs) are subjected to various environmental disturbances due to ocean currents, propulsion systems, and un-modeled disturbances. In practice, it is very challenging to design a control system to maintain UVs stayed at the desired static position permanently under these conditions. Therefore, in this study, a nonlinear dynamics and robust positioning control of the over-actuated autonomous underwater vehicle (AUV) under the effects of ocean current and model uncertainties are presented. First, a motion equation of the over-actuated AUV under the effects of ocean current disturbances is established, and a trajectory generation of the over-actuated AUV heading angle is constructed based on the line of sight (LOS) algorithm. Second, a dynamic positioning (DP) control system based on motion control and an allocation control is proposed. For this, motion control of the over-actuated AUV based on the dynamic sliding mode control (DSMC) theory is adopted to improve the system robustness under the effects of the ocean current and model uncertainties. In addition, the stability of the system is proved based on Lyapunov criteria. Then, using the generalized forces generated from the motion control module, two different methods for optimal allocation control module: the least square (LS) method and quadratic programming (QP) method are developed to distribute a proper thrust to each thruster of the over-actuated AUV. Simulation studies are conducted to examine the effectiveness and robustness of the proposed DP controller. The results show that the proposed DP controller using the QP algorithm provides higher stability with smaller steady-state error and stronger robustness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA