Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Pathog ; 18(9): e1010803, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36103572

RESUMEN

Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity.


Asunto(s)
Antimaláricos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Malaria Falciparum , Parásitos , Animales , Antimaláricos/metabolismo , Biomarcadores/metabolismo , Resistencia a Medicamentos/genética , Fosfomicina/análogos & derivados , Hemo/metabolismo , Humanos , Malaria Falciparum/parasitología , Parásitos/metabolismo , Fosfatos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Terpenos/metabolismo
2.
ACS Infect Dis ; 10(3): 1000-1022, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38367280

RESUMEN

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Asunto(s)
Antimaláricos , Malaria Falciparum , Tiazoles , Humanos , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Cloroquina , Antimaláricos/farmacología , Antimaláricos/química
3.
Sci Rep ; 6: 36777, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857147

RESUMEN

The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.


Asunto(s)
Antimaláricos/farmacología , Benzotiazoles/farmacología , Citidililtransferasa de Colina-Fosfato/química , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Eritritol/análogos & derivados , Eritritol/química , Concentración 50 Inhibidora , Proteínas Recombinantes/química , Fosfatos de Azúcar/química
4.
Nat Commun ; 5: 4467, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25058848

RESUMEN

Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. Here we employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologues in plants and bacteria, other HAD proteins may be MEP pathway regulators.


Asunto(s)
Eritritol/análogos & derivados , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Plasmodium falciparum/metabolismo , Fosfatos de Azúcar/metabolismo , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Antimaláricos/farmacología , Dominio Catalítico , Citoplasma/metabolismo , Resistencia a Medicamentos , Eritritol/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Prueba de Complementación Genética , Monoéster Fosfórico Hidrolasas/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Xilosa/análogos & derivados , Xilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA