Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 295-322, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925262

RESUMEN

The nuclear genome decays as organisms age. Numerous studies demonstrate that the burden of several classes of DNA lesions is greater in older mammals than in young mammals. More challenging is proving this is a cause rather than a consequence of aging. The DNA damage theory of aging, which argues that genomic instability plays a causal role in aging, has recently gained momentum. Support for this theory stems partly from progeroid syndromes in which inherited defects in DNA repair increase the burden of DNA damage leading to accelerated aging of one or more organs. Additionally, growing evidence shows that DNA damage accrual triggers cellular senescence and metabolic changes that promote a decline in tissue function and increased susceptibility to age-related diseases. Here, we examine multiple lines of evidence correlating nuclear DNA damage with aging. We then consider how, mechanistically, nuclear genotoxic stress could promote aging. We conclude that the evidence, in toto, supports a role for DNA damage as a nidus of aging.


Asunto(s)
Envejecimiento/genética , Núcleo Celular/genética , Inestabilidad Genómica , Envejecimiento/efectos de los fármacos , Envejecimiento/efectos de la radiación , Animales , Autofagia/genética , Senescencia Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Longevidad/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Genéticos , Mutación , Neoplasias/genética , Neoplasias/terapia , Proteostasis/genética , Regeneración/genética , Transducción de Señal/genética
2.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340339

RESUMEN

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Asunto(s)
Envejecimiento/patología , Antibióticos Antineoplásicos/efectos adversos , Péptidos de Penetración Celular/farmacología , Doxorrubicina/efectos adversos , Envejecimiento/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Apoptosis , Proteínas de Ciclo Celular , Línea Celular , Supervivencia Celular , Senescencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Femenino , Fibroblastos/citología , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/metabolismo , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Riñón/efectos de los fármacos , Riñón/fisiología , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Ratones , Síndromes de Tricotiodistrofia/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo
3.
Nat Rev Mol Cell Biol ; 20(12): 766-784, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31558824

RESUMEN

The spatiotemporal control of RNA polymerase II (Pol II)-mediated gene transcription is tightly and intricately regulated. In addition, preservation of the integrity of the DNA template is required so as to ensure unperturbed transcription, particularly since DNA is continually challenged by different types of damaging agents that can form transcription-blocking DNA lesions (TBLs), which impede transcription elongation and cause transcription stress. To overcome the highly cytotoxic effects of TBLs, an intricate cellular response has evolved, in which the transcription-coupled nucleotide excision repair (TC-NER) pathway has a central role in removing TBLs specifically from the transcribed strand. Damage detection by stalling of the transcribing Pol II is highly efficient, but a stalled Pol II complex may create an even bigger problem by interfering with repair of the lesions, and overall with transcription and replication. In this Review, we discuss the effects of different types of DNA damage on Pol II, important concepts of transcription stress, the manner in which TBLs are removed by TC-NER and how different tissues respond to TBLs. We also discuss the role of TBLs in ageing and the complex genotype-phenotype correlations of TC-NER hereditary disorders.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Enfermedades Genéticas Congénitas , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , ARN Polimerasa II/genética
4.
Trends Genet ; 40(4): 299-312, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519330

RESUMEN

Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Daño del ADN/genética
5.
Nature ; 592(7856): 695-703, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33911272

RESUMEN

Ageing is a complex, multifaceted process leading to widespread functional decline that affects every organ and tissue, but it remains unknown whether ageing has a unifying causal mechanism or is grounded in multiple sources. Phenotypically, the ageing process is associated with a wide variety of features at the molecular, cellular and physiological level-for example, genomic and epigenomic alterations, loss of proteostasis, declining overall cellular and subcellular function and deregulation of signalling systems. However, the relative importance, mechanistic interrelationships and hierarchical order of these features of ageing have not been clarified. Here we synthesize accumulating evidence that DNA damage affects most, if not all, aspects of the ageing phenotype, making it a potentially unifying cause of ageing. Targeting DNA damage and its mechanistic links with the ageing phenotype will provide a logical rationale for developing unified interventions to counteract age-related dysfunction and disease.


Asunto(s)
Envejecimiento/genética , Daño del ADN , Animales , Diferenciación Celular , Linaje de la Célula , Reparación del ADN , Humanos
6.
Nat Rev Mol Cell Biol ; 15(7): 465-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24954209

RESUMEN

Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/fisiología , Neoplasias/genética , Daño del ADN , Reparación del ADN/genética , Humanos , Modelos Biológicos , Ubiquitina/fisiología
7.
Mol Cell ; 61(4): 535-546, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26833090

RESUMEN

XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Inestabilidad Genómica , Recombinación Homóloga , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Síndrome de Cockayne/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Genoma Humano , Células HeLa , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Recombinasa Rad51/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
8.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909043

RESUMEN

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Asunto(s)
Alanina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/genética , Alanina-ARNt Ligasa/metabolismo , Niño , Estabilidad de Enzimas/genética , Femenino , Humanos , Metionina-ARNt Ligasa/metabolismo , Síndromes de Tricotiodistrofia/enzimología , Síndromes de Tricotiodistrofia/patología , Secuenciación Completa del Genoma
9.
Mol Cell ; 59(6): 885-6, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26384662

RESUMEN

In this issue, Li et al. (2015) uncover roles for the XPB and XPD helicases and for XPA during damage verification in nucleotide excision repair, supporting a novel tripartite damage checking mechanism that combines extreme versatility with narrow specificity.


Asunto(s)
Aductos de ADN/genética , Proteínas de Unión al ADN/fisiología , Factor de Transcripción TFIIH/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/fisiología , Animales , Humanos
10.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374204

RESUMEN

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Asunto(s)
Enfermedades del Cabello/patología , Mutación , Treonina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/patología , Alelos , Secuencia de Aminoácidos , Estudios de Casos y Controles , Enfermedades del Cabello/genética , Humanos , Fenotipo , Homología de Secuencia , Factor de Transcripción TFIIH/genética , Síndromes de Tricotiodistrofia/genética
12.
Nature ; 523(7558): 53-8, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26106861

RESUMEN

In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/fisiología , Transducción de Señal , Empalmosomas/metabolismo , Empalme Alternativo/fisiología , Línea Celular , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Humanos , Rayos Ultravioleta
13.
Clin Sci (Lond) ; 134(7): 727-746, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32202295

RESUMEN

We previously identified genomic instability as a causative factor for vascular aging. In the present study, we determined which vascular aging outcomes are due to local endothelial DNA damage, which was accomplished by genetic removal of ERCC1 (excision repair cross-complementation group 1) DNA repair in mice (EC-knockout (EC-KO) mice). EC-KO showed a progressive decrease in microvascular dilation of the skin, increased microvascular leakage in the kidney, decreased lung perfusion, and increased aortic stiffness compared with wild-type (WT). EC-KO showed expression of DNA damage and potential senescence marker p21 exclusively in the endothelium, as demonstrated in aorta. Also the kidney showed p21-positive cells. Vasodilator responses measured in organ baths were decreased in aorta, iliac and coronary artery EC-KO compared with WT, of which coronary artery was the earliest to be affected. Nitric oxide-mediated endothelium-dependent vasodilation was abolished in aorta and coronary artery, whereas endothelium-derived hyperpolarization and responses to exogenous nitric oxide (NO) were intact. EC-KO showed increased superoxide production compared with WT, as measured in lung tissue, rich in endothelial cells (ECs). Arterial systolic blood pressure (BP) was increased at 3 months, but normal at 5 months, at which age cardiac output (CO) was decreased. Since no further signs of cardiac dysfunction were detected, this decrease might be an adaptation to prevent an increase in BP. In summary, a selective DNA repair defect in the endothelium produces features of age-related endothelial dysfunction, largely attributed to loss of endothelium-derived NO. Increased superoxide generation might contribute to the observed changes affecting end organ perfusion, as demonstrated in kidney and lung.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/deficiencia , Endonucleasas/deficiencia , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Permeabilidad Capilar , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Superóxidos/metabolismo , Rigidez Vascular , Vasodilatación
14.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973399

RESUMEN

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Asunto(s)
Factores de Transcripción TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , ADN Helicasas/genética , Reparación del ADN , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Mutación , Mutación Missense , Especificidad de Órganos , Linaje , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología
15.
Annu Rev Pharmacol Toxicol ; 56: 427-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26514200

RESUMEN

Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.


Asunto(s)
Envejecimiento/genética , Inestabilidad Genómica/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Síndrome
16.
Clin Sci (Lond) ; 131(15): 1941-1953, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28620011

RESUMEN

DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model (Ercc1Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser1177-eNOS were compromised in Ercc1Δ/- DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1Δ/- mice. Ercc1Δ/- mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective.


Asunto(s)
Envejecimiento/metabolismo , Daño del ADN , Receptor de Angiotensina Tipo 1/metabolismo , Enfermedades Vasculares/dietoterapia , Envejecimiento/genética , Angiotensina II/metabolismo , Animales , Presión Sanguínea , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dieta , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Receptor de Angiotensina Tipo 1/genética , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología , Vasodilatación
17.
PLoS Genet ; 10(10): e1004686, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25299392

RESUMEN

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.


Asunto(s)
Envejecimiento , Proteínas de Unión al ADN/deficiencia , Enfermedades Carenciales/etiología , Endonucleasas/deficiencia , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia , Envejecimiento/genética , Animales , Encéfalo/patología , Caquexia/etiología , Caquexia/genética , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/fisiopatología , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedades Carenciales/genética , Modelos Animales de Enfermedad , Endonucleasas/genética , Endonucleasas/metabolismo , Femenino , Hígado/patología , Longevidad/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoporosis/etiología , Osteoporosis/genética , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Biol Chem ; 290(33): 20541-55, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26085086

RESUMEN

The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.


Asunto(s)
Síndrome de Cockayne/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Mutación Puntual , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Dimerización , Endonucleasas/química , Humanos , Modelos Químicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
19.
BMC Cancer ; 16: 78, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26860465

RESUMEN

BACKGROUND: The high incidence of breast cancer has sparked the development of novel targeted and personalized therapies. Personalization of cancer treatment requires reliable prediction of chemotherapy responses in individual patients. Effective selection can prevent unnecessary treatment that would mainly result in the unwanted side effects of the therapy. This selection can be facilitated by characterization of individual tumors using robust and specific functional assays, which requires development of powerful ex vivo culture systems and procedures to analyze the response to treatment. METHODS: We optimized culture methods for primary breast tumor samples that allowed propagation of tissue ex vivo. We combined several tissue culture strategies, including defined tissue slicing technology, growth medium optimization and use of a rotating platform to increase nutrient exchange. RESULTS: We could maintain tissue cultures for at least 7 days without losing tissue morphology, viability or cell proliferation. We also developed methods to determine the cytotoxic response of individual tumors to the chemotherapeutic treatment FAC (5-FU, Adriamycin [Doxorubicin] and Cyclophosphamide). Using this tool we designated tumors as sensitive or resistant and distinguished a clinically proven resistant tumor from other tumors. CONCLUSION: This method defines conditions that allow ex vivo testing of individual tumor responses to anti-cancer drugs and therefore might improve personalization of breast cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Cultivo de Tejidos/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/patología , Ciclofosfamida/administración & dosificación , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos/genética , Femenino , Fluorouracilo/administración & dosificación , Humanos , Medicina de Precisión , Células Tumorales Cultivadas/efectos de los fármacos
20.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637614

RESUMEN

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Asunto(s)
Reparación del ADN , Síndromes de Tricotiodistrofia , Animales , Síndrome de Cockayne , Humanos , Mutación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción Genética , Síndromes de Tricotiodistrofia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA