Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(6): 3651-3660, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29792713

RESUMEN

Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.

2.
Nano Lett ; 17(6): 3582-3590, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28535070

RESUMEN

Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

3.
JMIR Mhealth Uhealth ; 12: e48625, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224477

RESUMEN

BACKGROUND: The field of eHealth is growing rapidly and chaotically. Health care professionals need guidance on reviewing and assessing health-related smartphone apps to propose appropriate ones to their patients. However, to date, no framework or evaluation tool fulfills this purpose. OBJECTIVE: Before developing a tool to help health care professionals assess and recommend apps to their patients, we aimed to create an overview of published criteria to describe and evaluate health apps. METHODS: We conducted a systematic review to identify existing criteria for eHealth smartphone app evaluation. Relevant databases and trial registers were queried for articles. Articles were included that (1) described tools, guidelines, dimensions, or criteria to evaluate apps, (2) were available in full text, and (3) were written in English, French, German, Italian, Portuguese, or Spanish. We proposed a conceptual framework for app evaluation based on the dimensions reported in the selected articles. This was revised iteratively in discussion rounds with international stakeholders. The conceptual framework was used to synthesize the reported evaluation criteria. The list of criteria was discussed and refined by the research team. RESULTS: Screening of 1258 articles yielded 128 (10.17%) that met the inclusion criteria. Of these 128 articles, 30 (23.4%) reported the use of self-developed criteria and described their development processes incompletely. Although 43 evaluation instruments were used only once, 6 were used in multiple studies. Most articles (83/128, 64.8%) did not report following theoretical guidelines; those that did noted 37 theoretical frameworks. On the basis of the selected articles, we proposed a conceptual framework to explore 6 app evaluation dimensions: context, stakeholder involvement, features and requirements, development processes, implementation, and evaluation. After standardizing the definitions, we identified 205 distinct criteria. Through consensus, the research team relabeled 12 of these and added 11 more-mainly related to ethical, legal, and social aspects-resulting in 216 evaluation criteria. No criteria had to be moved between dimensions. CONCLUSIONS: This study provides a comprehensive overview of criteria currently used in clinical practice to describe and evaluate apps. This is necessary as no reviewed criteria sets were inclusive, and none included consistent definitions and terminology. Although the resulting overview is impractical for use in clinical practice in its current form, it confirms the need to craft it into a purpose-built, theory-driven tool. Therefore, in a subsequent step, based on our current criteria set, we plan to construct an app evaluation tool with 2 parts: a short section (including 1-3 questions/dimension) to quickly disqualify clearly unsuitable apps and a longer one to investigate more likely candidates in closer detail. We will use a Delphi consensus-building process and develop a user manual to prepare for this undertaking. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42021227064; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021227064.


Asunto(s)
Aplicaciones Móviles , Telemedicina , Humanos , Consenso , Bases de Datos Factuales
5.
Nanoscale Adv ; 3(13): 3835-3845, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36133019

RESUMEN

GaN-on-diamond is a promising route towards reliable high-power transistor devices with outstanding performances due to better heat management, replacing common GaN-on-SiC technologies. Nevertheless, the implementation of GaN-on-diamond remains challenging. In this work, the selective area growth of GaN nanostructures on cost-efficient, large-scale available heteroepitaxial diamond (001) substrates by means of plasma-assisted molecular beam epitaxy is investigated. Additionally, we discuss the influence of an AlN buffer on the morphology of the GaN nanostructures. The nanowires and nanofins are characterized by a very high selectivity and controllable dimensions. Low temperature photoluminescence measurements are used to evaluate their structural quality. The growth of two GaN crystal domains, which are in-plane rotated against each other by 30°, is observed. The favoring of a certain domain is determined by the off-cut direction of the diamond substrates. By X-ray diffraction we show that the GaN nanostructures grow perpendicular to the diamond surface on off-cut diamond (001) substrates, which is in contrast to the growth on diamond (111), where the nanostructures are aligned with the substrate lattice. Polarity-selective wet chemical etching and Kelvin probe force microscopy reveal that the GaN nanostructures grow solely in the Ga-polar direction. This is a major advantage compared to the growth on diamond (111) and enables the application of GaN nanostructures on cost-efficient diamond for high-power/high-frequency applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA