Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Biosci ; 11(1): 100, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051873

RESUMEN

BACKGROUND: The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has resulted in the infection of over 128 million people and has caused over 2.8 million deaths as of April 2021 in more than 220 countries and territories. Currently, there is no effective treatment for COVID-19 to reduce mortality. We investigated the potential anti-coronavirus activities from an oral liquid of traditional medicine, Respiratory Detox Shot (RDS), which contains mostly herbal ingredients traditionally used to manage lung diseases. RESULTS: Here we report that RDS inhibited the infection of target cells by lenti-SARS-CoV, lenti-SARS-CoV-2, and hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudoviruses, and by infectious SARS-CoV-2 and derived Ha-CoV-2 variants including B.1.1.7, B.1.351, P.1, B.1.429, B.1.2, B.1.494, B.1.1.207, B.1.258, and B.1.1.298. We further demonstrated that RDS directly inactivates the infectivity of SARS-CoV-2 virus particles. In addition, we found that RDS can also block the infection of target cells by Influenza A virus. CONCLUSIONS: These results suggest that RDS may broadly inhibit the infection of respiratory viruses.

2.
J Integr Med ; 18(3): 229-241, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307268

RESUMEN

OBJECTIVE: Lung-toxin Dispelling Formula No. 1, referred to as Respiratory Detox Shot (RDS), was developed based on a classical prescription of traditional Chinese medicine (TCM) and the theoretical understanding of herbal properties within TCM. Therapeutic benefits of using RDS for both disease control and prevention, in the effort to contain the coronavirus disease 2019 (COVID-19), have been shown. However, the biochemically active constituents of RDS and their mechanisms of action are still unclear. The goal of the present study is to clarify the material foundation and action mechanism of RDS. METHODS: To conduct an analysis of RDS, an integrative analytical platform was constructed, including target prediction, protein-protein interaction (PPI) network, and cluster analysis; further, the hub genes involved in the disease-related pathways were identified, and the their corresponding compounds were used for in vitro validation of molecular docking predictions. The presence of these validated compounds was also measured in samples of the RDS formula to quantify the abundance of the biochemically active constituents. In our network pharmacological study, a total of 26 bioinformatic programs and databases were used, and six networks, covering the entire Zang-fu viscera, were constructed to comprehensively analyze the intricate connections among the compounds-targets-disease pathways-meridians of RDS. RESULTS: For all 1071 known chemical constituents of the nine ingredients in RDS, identified from established TCM databases, 157 passed drug-likeness screening and led to 339 predicted targets in the constituent-target network. Forty-two hub genes with core regulatory effects were extracted from the PPI network, and 134 compounds and 29 crucial disease pathways were implicated in the target-constituent-disease network. Twelve disease pathways attributed to the Lung-Large Intestine meridians, with six and five attributed to the Kidney-Urinary Bladder and Stomach-Spleen meridians, respectively. One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition. The in vitro activity of 22 chemical constituents of RDS was validated using the 3CLpro inhibition assay. Finally, using liquid chromatography mass spectrometry in data-independent analysis mode, the presence of seven out of these 22 constituents was confirmed and validated in an aqueous decoction of RDS, using reference standards in both non-targeted and targeted approaches. CONCLUSION: RDS acts primarily in the Lung-Large Intestine, Kidney-Urinary Bladder and Stomach-Spleen meridians, with other Zang-fu viscera strategically covered by all nine ingredients. In the context of TCM meridian theory, the multiple components and targets of RDS contribute to RDS's dual effects of health-strengthening and pathogen-eliminating. This results in general therapeutic effects for early COVID-19 control and prevention.


Asunto(s)
Antivirales/química , Betacoronavirus/química , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Neumonía Viral/tratamiento farmacológico , Antivirales/uso terapéutico , Betacoronavirus/enzimología , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Espectrometría de Masas , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/virología , Mapas de Interacción de Proteínas , SARS-CoV-2 , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA