Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 628(8009): 765-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658685

RESUMEN

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
Nano Lett ; 24(23): 7084-7090, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814251

RESUMEN

Magnesium is a recent addition to the plasmonic toolbox: nanomaterials that efficiently utilize photons' energy due to their ability to sustain localized surface plasmon resonances. Magnesium nanoparticles protected by a native oxide shell can efficiently absorb light across the solar spectrum, making them a promising photocatalytic material. However, their inherent reactivity toward oxidation may limit the number of reactions in which Mg-MgO can be used. Here, we investigate the stability of plasmonic Mg-MgO core-shell nanoplates under oxidative conditions. We demonstrate that the MgO shell stabilizes the metallic Mg core against oxidation in air at up to 400 °C. Furthermore, we show that the reactivity of Mg-MgO nanoplates with water vapor (3.5 vol % in N2) decreases with temperature, with no oxidation of the Mg core detected from 200 to 400 °C. This work unravels the potential of Mg-MgO nanoparticles for a broad range of catalytic transformations occurring in oxidative environments.

4.
Sci Adv ; 10(6): eadi1323, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324690

RESUMEN

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA