Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(8): e3002380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137219

RESUMEN

Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4 effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here, we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4 T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.


Asunto(s)
Envejecimiento , Linfocitos T CD4-Positivos , Senescencia Celular , Células T de Memoria , Animales , Células T de Memoria/inmunología , Linfocitos T CD4-Positivos/inmunología , Ratones , Senescencia Celular/inmunología , Envejecimiento/inmunología , Envejecimiento/fisiología , Ratones Endogámicos C57BL , Memoria Inmunológica
2.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38948729

RESUMEN

Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4+ effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4+ T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.

3.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071363

RESUMEN

Foxp3 + Regulatory T cells (Treg) are a subset of CD4 + T cells that play critical functions in maintaining tolerance to self antigens and suppressing autoimmunity, regulating immune responses to pathogens and have a role in the pathophysiology of anti-tumoural immunity. Treg ontogeny is complex since they are generated following recognition of self antigens in the thymus during normal T cell development (thymic Treg), but are also induced from mature conventional T cells when activated by foreign antigen with appropriate additional cues (inducible Treg). How these distinct ontogenic pathways contribute to the maintenance and function of the mature Treg compartment in health and disease remains unclear. Here, we use a combination of fate mapping approaches in mice to map the ontogeny of Treg subsets throughout life and estimate rates of production, loss and self-renewal. We find that naive and effector/memory (EM) Treg subsets exhibit distinct dynamics but are both continuously replenished by de novo generation throughout life. Using an inducible Foxp3-dependent Cre fate reporter system, we show that naive Treg and not conventional T cells, are the predominant precursors of EM Treg in adults. Tonic development of new EM Treg is not influenced by foreign antigens from commensals, rather suggesting a role for self recognition. To investigate the ontogeny of Treg development in malignant disease, we used the same fate reporter systems to characterise the Treg infiltrate of three different model tumours. In all three cases, we found that Treg derived from pre-existing, EM Treg. Together, these results reveal a predominantly linear pathway of Treg development from thymic origin to EM Treg associated with pathophysiology of malignant disease, that is driven by self antigen recognition throughout.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA