RESUMEN
Cosmic large-scale structures, animal flocks and living tissues can be considered non-equilibrium organized systems created by dissipative processes. Replicating such properties in artificial systems is still difficult. Herein we report a dissipative network formation process in a dilute polymer-water mixture that leads to percolation-induced gel-gel phase separation. The dilute system, which forms a monophase structure at the percolation threshold, spontaneously separates into two co-continuous gel phases with a submillimetre scale (a dilute-percolated gel) during the deswelling process after the completion of the gelation reaction. The dilute-percolated gel, which contains 99% water, exhibits unexpected hydrophobicity and induces the development of adipose-like tissues in subcutaneous tissues. These findings support the development of dissipative structures with advanced functionalities for distinct applications, ranging from physical chemistry to tissue engineering.
Asunto(s)
Polímeros , Animales , Geles/química , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Agua/químicaRESUMEN
Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.
Asunto(s)
Calcificación Fisiológica , Calcinosis , N-Acetilgalactosaminiltransferasas , Osteoblastos , Animales , Femenino , Masculino , Ratones , Calcinosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factores de Crecimiento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipéptido N-AcetilgalactosaminiltransferasaRESUMEN
PURPOSE OF REVIEW: Runt-related transcription factors (RUNX) play critical roles in skeletal development, metabolism, and diseases. In mammals, three RUNX members, namely RUNX1, RUNX2, and RUNX3, play distinct and redundant roles, although RUNX2 is a dominant factor in skeletal development and several skeletal diseases. This review is to provide an overview of the current understanding of RUNX-mediated transcriptional regulation in different skeletal cell types. RECENT FINDINGS: Advances in chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) have revealed genome-wide RUNX-mediated gene regulatory mechanisms, including their association with cis-regulatory elements and putative target genes. Further studies with genome-wide analysis and biochemical assays have shed light on RUNX-mediated pioneering action and involvements of RUNX2 in lipid-lipid phase separation. Emerging multi-layered mechanisms of RUNX-mediated gene regulations help us better understanding of skeletal development and diseases, which also provides clues to think how genome-wide studies can help develop therapeutic strategies for skeletal diseases.
Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Regulación de la Expresión Génica , Animales , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Lípidos , MamíferosRESUMEN
PURPOSE OF REVIEW: This review paper provides step-by-step instructions on the fundamental process, from handling fastq datasets to illustrating plots and drawing trajectories. RECENT FINDINGS: The number of studies using single-cell RNA-seq (scRNA-seq) is increasing. scRNA-seq revealed the heterogeneity or diversity of the cellular populations. scRNA-seq also provides insight into the interactions between different cell types. User-friendly scRNA-seq packages for ligand-receptor interactions and trajectory analyses are available. In skeletal biology, osteoclast differentiation, fracture healing, ectopic ossification, human bone development, and the bone marrow niche have been examined using scRNA-seq. scRNA-seq data analysis tools are still being developed, even at the fundamental step of dataset integration. However, updating the latest information is difficult for many researchers. Investigators and reviewers must share their knowledge of in silico scRNA-seq for better biological interpretation. This review article aims to provide a useful guide for complex analytical processes in single-cell RNA-seq data analysis.
RESUMEN
Skeletal development is tightly coordinated by chondrocytes and osteoblasts, which are derived from skeletal progenitors, and distinct cell-type gene regulatory programs underlie the specification and differentiation of cells. Runt-related transcription factor 2 (Runx2) is essential to chondrocyte hypertrophy and osteoblast differentiation. Genetic studies have revealed the biological functions of Runx2 and its involvement in skeletal genetic diseases. Meanwhile, molecular biology has provided a framework for our understanding of RUNX2-mediated transactivation at a limited number of cis-regulatory elements. Furthermore, studies using next-generation sequencing (NGS) have provided information on RUNX2-mediated gene regulation at the genome level and novel insights into the multiple layers of gene regulatory mechanisms, including the modes of action of RUNX2, chromatin accessibility, the concept of pioneer factors and phase separation, and three-dimensional chromatin organization. In this review, I summarize the emerging RUNX2-mediated regulatory mechanism from a multi-layer perspective and discuss future perspectives for applications in the treatment of skeletal diseases.
Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Regulación de la Expresión Génica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Osteogénesis , Osteoblastos/metabolismoRESUMEN
Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L-type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal-onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5-deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1-GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Escoliosis , Animales , Ratones , Aminoácidos , Condrocitos/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Escoliosis/genética , Escoliosis/metabolismo , Escoliosis/patología , Modelos Animales de EnfermedadRESUMEN
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Asunto(s)
Enfermedades Óseas , Sistema Musculoesquelético , Osteoblastos , Factor de Transcripción Sp7 , Enfermedades Óseas/genética , Humanos , Sistema Musculoesquelético/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Esqueleto/metabolismo , Factor de Transcripción Sp7/genéticaRESUMEN
Skeletal disorders, such as osteoarthritis and bone fractures, are among the major conditions that can compromise the quality of daily life of elderly individuals. To treat them, regenerative therapies using skeletal cells have been an attractive choice for patients with unmet clinical needs. Currently, there are two major strategies to prepare the cell sources. The first is to use induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs), which can recapitulate the skeletal developmental process and differentiate into various skeletal cells. Skeletal tissues are derived from three distinct origins: the neural crest, paraxial mesoderm, and lateral plate mesoderm. Thus, various protocols have been proposed to recapitulate the sequential process of skeletal development. The second strategy is to extract stem cells from skeletal tissues. In addition to mesenchymal stem/stromal cells (MSCs), multiple cell types have been identified as alternative cell sources. These cells have distinct multipotent properties allowing them to differentiate into skeletal cells and various potential applications for skeletal regeneration. In this review, we summarize state-of-the-art research in stem cell differentiation based on the understanding of embryogenic skeletal development and stem cells existing in skeletal tissues. We then discuss the potential applications of these cell types for regenerative medicine.
Asunto(s)
Desarrollo Óseo/fisiología , Huesos/fisiología , Fracturas Óseas/terapia , Osteoartritis/terapia , Medicina Regenerativa/métodos , Animales , Huesos/embriología , Huesos/lesiones , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/fisiología , Fracturas Óseas/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/fisiología , Mesodermo/embriología , Cresta Neural/embriología , Osteoartritis/fisiopatología , Osteoblastos/fisiología , Osteoblastos/trasplante , Medicina Regenerativa/tendencias , Trasplante de Células Madre/métodos , Trasplante de Células Madre/tendenciasRESUMEN
Antxr1/Tem8 is highly expressed in tumor endothelial cells and is a receptor for anthrax toxin. Mutation of Antxr1 causes GAPO syndrome, which is characterized by growth retardation, alopecia, pseudo-anodontia, and optic atrophy. However, the mechanism underlying the growth retardation remains to be clarified. Runx2 is essential for osteoblast differentiation and chondrocyte maturation and regulates chondrocyte proliferation through Ihh induction. In the search of Runx2 target genes in chondrocytes, we found that Antxr1 expression is upregulated by Runx2. Antxr1 was highly expressed in cartilaginous tissues and was directly regulated by Runx2. In skeletal development, the process of endochondral ossification proceeded similarly in wild-type and Antxr1-/- mice. However, the limbs of Antxr1-/- mice were shorter than those of wild-type mice from embryonic day 16.5 due to the reduced chondrocyte proliferation. Chondrocyte-specific Antxr1 transgenic mice exhibited shortened limbs, although the process of endochondral ossification proceeded as in wild-type mice. BrdU-uptake and apoptosis were both increased in chondrocytes, and the apoptosis-high regions were mineralized. These findings indicated that Antxr1, of which the expression is regulated by Runx2, plays an important role in chondrocyte proliferation and that overexpression of Antxr1 causes chondrocyte apoptosis accompanied by matrix mineralization.
Asunto(s)
Apoptosis/fisiología , Proliferación Celular/fisiología , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Cartílago , Diferenciación Celular/fisiología , Condrocitos/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Endoteliales , Femenino , Fémur/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Mutación , Osteogénesis/fisiología , Receptores de Superficie Celular/genética , Esqueleto/embriología , Esqueleto/patología , Tibia/patología , Transcriptoma , Regulación hacia ArribaRESUMEN
Skeletal development creates the physical framework that shapes our body and its actions. In the past two decades, genetic studies have provided important insights into the molecular processes at play, including the roles of signaling pathways and transcriptional effectors that coordinate an orderly, progressive emergence and expansion of distinct cartilage and bone cell fates in an invariant temporal and spatial pattern for any given skeletal element within that specific vertebrate species. Genome-scale studies have provided additional layers of understanding, moving from individual genes to the gene regulatory landscape, integrating regulatory information through cis-regulatory modules into cell type-specific gene regulatory programs. This review discusses our current understanding of the transcriptional control of mammalian skeletal development, focusing on recent genome-scale studies.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Mamíferos/genética , Organogénesis/genética , Esqueleto/crecimiento & desarrollo , Animales , Redes Reguladoras de Genes/genética , Genoma , Mamíferos/crecimiento & desarrollo , Transducción de Señal/genéticaRESUMEN
An analysis of Sox9 binding profiles in developing chondrocytes identified marked enrichment of an AP-1-like motif. Here, we have explored the functional interplay between Sox9 and AP-1 in mammalian chondrocyte development. Among AP-1 family members, Jun and Fosl2 were highly expressed within prehypertrophic and early hypertrophic chondrocytes. Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) showed a striking overlap in Jun- and Sox9-bound regions throughout the chondrocyte genome, reflecting direct binding of each factor to the same enhancers and a potential for protein-protein interactions within AP-1- and Sox9-containing complexes. In vitro reporter analysis indicated that direct co-binding of Sox9 and AP-1 at target motifs promoted gene activity. By contrast, where only one factor can engage its DNA target, the presence of the other factor suppresses target activation consistent with protein-protein interactions attenuating transcription. Analysis of prehypertrophic chondrocyte removal of Sox9 confirmed the requirement of Sox9 for hypertrophic chondrocyte development, and in vitro and ex vivo analyses showed that AP-1 promotes chondrocyte hypertrophy. Sox9 and Jun co-bound and co-activated a Col10a1 enhancer in Sox9 and AP-1 motif-dependent manners consistent with their combined action promoting hypertrophic gene expression. Together, the data support a model in which AP-1 family members contribute to Sox9 action in the transition of chondrocytes to the hypertrophic program.
Asunto(s)
Condrocitos/citología , Condrocitos/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/genética , Condrogénesis/fisiología , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos/genética , Elementos de Facilitación Genéticos/fisiología , Humanos , Factor de Transcripción SOX9/genética , Factor de Transcripción AP-1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Chondrogenesis is a key developmental process that molds the framework of our body and generates the skeletal tissues by coupling with osteogenesis. The developmental processes are well-coordinated by spatiotemporal gene expressions, which are hardwired with gene regulatory elements. Those elements exist as thousands of modules of DNA sequences on the genome. Transcription factors function as key regulatory proteins by binding to regulatory elements and recruiting cofactors. Over the past 30 years, extensive attempts have been made to identify gene regulatory mechanisms in chondrogenesis, mainly through biochemical approaches and genetics. More recently, newly developed next-generation sequencers (NGS) have identified thousands of gene regulatory elements on a genome scale, and provided novel insights into the multiple layers of gene regulatory mechanisms, including the modes of actions of transcription factors, post-translational histone modifications, chromatin accessibility, the concept of pioneer factors, and three-dimensional chromatin architecture. In this review, we summarize the studies that have improved our understanding of the gene regulatory mechanisms in chondrogenesis, from the historical studies to the more recent works using NGS. Finally, we consider the future perspectives, including efforts to improve our understanding of the gene regulatory landscape in chondrogenesis and potential applications to the treatment of chondrocyte-related diseases.
Asunto(s)
Condrocitos/fisiología , Redes Reguladoras de Genes/genética , Animales , Condrogénesis/genética , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Factores de Transcripción/genéticaRESUMEN
Repair of large segmental defects of long bones are a tremendous challenge that calls for a novel approach to supporting immediate weight bearing and bone regeneration. This study investigated the functional and biological characteristics of a combination of a tailor-made titanium mesh cage with a plate (tTMCP) with tetrapod-shaped alpha tricalcium phosphate granules (TB) and basic fibroblast growth factor (bFGF)-binding ion complex gel (f-IC gel) to repair 20-mm segmental radial defects in dogs. The defects were created surgically in 18 adult beagle dogs and treated by implantation of tTMCPs with TB with (TB-gel group) or without (TB group) f-IC gel. Each tTMCP fitted the defect well, and all dogs could bear weight on the affected limb immediately after surgery. Dogs were euthanized 4, 8 and 24 weeks after implantation. Histomorphometry showed greater infiltration of new vessels and higher bone union rate in the TB-gel group than in the TB group. The lamellar bone volume and mineral apposition rate did not differ significantly between the groups, indicating that neovascularization may be the primary effect of f-IC gel on bone regeneration. This combination method which is tTMCP combined with TB and f-IC gel, would be useful for the treatment of segmental long bone defects.
Asunto(s)
Placas Óseas , Regeneración Ósea/fisiología , Radio (Anatomía)/cirugía , Titanio , Cicatrización de Heridas/fisiología , Animales , Regeneración Ósea/efectos de los fármacos , Fosfatos de Calcio/uso terapéutico , Perros , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Soporte de Peso , Cicatrización de Heridas/efectos de los fármacosRESUMEN
Bone fracture healing is processed through multiple biological stages including the transition from cartilaginous callus to bony callus formation. Because of its specific, temporal and indispensable functions demonstrated by mouse genetic studies, Hedgehog (Hh) signaling is one of the most potent signaling pathways involved in these processes, but the effect of Hh-signaling activation by small compounds on the repair process had not yet been addressed. Here we examined therapeutic effects of local and one shot-administration of the Hh agonist known as smoothened agonist (SAG) on bone fracture healing in a mouse model. A quantitative analysis with three-dimensional micro-computed tomography showed that SAG administration increased the size of both the cartilaginous callus and bony callus at 14 days after the surgery. A histological analysis showed that SAG administration increased the number of cells expressing a proliferation marker and a chondrocyte marker in cartilaginous callus as well as the cells expressing an osteoblast marker in bony callus. These results indicate that the SAG administration resulted in an enhancement of callus formation during bone fracture healing, which is at least in part mediated by an increase in chondrocyte proliferation in cartilaginous callus and the promotion of bone formation in bony callus. Therapeutic strategies with a SAG-mediated protocol may thus be useful for the treatment of bone fractures.
Asunto(s)
Ciclohexilaminas/administración & dosificación , Curación de Fractura/efectos de los fármacos , Proteínas Hedgehog/agonistas , Tiofenos/administración & dosificación , Animales , Densidad Ósea/efectos de los fármacos , Callo Óseo/efectos de los fármacos , Callo Óseo/metabolismo , Callo Óseo/patología , Condrocitos/efectos de los fármacos , Condrocitos/patología , Modelos Animales de Enfermedad , Curación de Fractura/fisiología , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/tratamiento farmacológico , Fracturas de la Tibia/patología , Microtomografía por Rayos XRESUMEN
Nanoscaled drug-loaded carriers are of particular interest for efficient tumor therapy as numerous studies have shown improved targeting and efficacy. Nevertheless, most of these studies have been performed against allograft and xenograft tumor models, which have altered microenvironment features affecting the accumulation and penetration of nanocarriers. Conversely, the evaluation of nanocarriers on genetically engineered mice, which can gradually develop clinically relevant tumors, permits the validation of their design under normal processes of immunity, angiogenesis, and inflammation. Therefore, considering the poor prognosis of pancreatic cancer, we used the elastase 1-promoted luciferase and Simian virus 40 T and t antigens transgenic mice, which develop spontaneous bioluminescent pancreatic carcinoma, and showed that long circulating micellar nanocarriers, incorporating the parent complex of oxaliplatin, inhibited the tumor growth as a result of their efficient accumulation and penetration in the tumors. The reduction of the photon flux from the endogenous tumor by the micelles correlated with the decrease of serum carbohydrate-associated antigen 19-9 marker. Micelles also reduced the incidence of metastasis and ascites, extending the survival of the transgenic mice.
Asunto(s)
Antineoplásicos/uso terapéutico , Micelas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Peritoneales/secundario , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Portadores de Fármacos , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Peritoneales/prevención & control , Análisis de SupervivenciaRESUMEN
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1(-/-) fetuses, and the phenotype was more severe in Gli1(-/-);Gli2(-/-) newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.
Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Condrocitos/citología , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Osteocitos/citología , Animales , Diferenciación Celular , Linaje de la Célula , Análisis por Conglomerados , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteogénesis , Proteínas Recombinantes/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXD/metabolismo , Activación Transcripcional , Proteína con Dedos de Zinc GLI1RESUMEN
Understanding the composition and function of cells constituting tissues and organs is vital for unraveling biological processes. Single-cell analysis has allowed us to move beyond traditional methods of categorizing cell types. This innovative technology allows the transcriptional and epigenetic profiling of numerous individual cells, leading to significant insights into the development, homeostasis, and pathology of various organs and tissues in both animal models and human samples. In this review, we delve into the outcomes of major investigations using single-cell transcriptomics to decipher the cellular composition of mammalian teeth and periodontal tissues. The recent single-cell transcriptome-based studies have traced in detail the dental epithelium-ameloblast lineage and dental mesenchyme lineages in the mouse incisors and the tooth germ of both mice and humans; unraveled the microenvironment, the identity of niche cells, and cellular intricacies in the dental pulp; shed light on the molecular mechanisms orchestrating root formation; and characterized cellular dynamics of the periodontal ligament. Additionally, cellular components in dental pulps were compared between healthy and carious teeth at a single-cell level. Each section of this review contributes to a comprehensive understanding of tooth biology, offering valuable insights into developmental processes, niche cell identification, and the molecular secrets of the dental environment.
RESUMEN
OBJECTIVES: This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS: scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS: Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.
Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasa 1 , Papila Dental , Odontoblastos , Análisis de la Célula Individual , Germen Dentario , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Germen Dentario/metabolismo , Germen Dentario/citología , Germen Dentario/embriología , Papila Dental/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Odontoblastos/citología , Odontoblastos/metabolismo , Odontoblastos/efectos de los fármacos , Análisis de Secuencia de ARN/métodos , Odontogénesis/genética , Odontogénesis/efectos de los fármacos , Transcriptoma , Inmunohistoquímica , Redes Reguladoras de Genes/efectos de los fármacosRESUMEN
With the rising prevalence of bone-related injuries, it is crucial to improve treatments for fractures and defects. Tissue engineering offers a promising solution in the form of injectable hydrogel scaffolds that can sustain the release of growth factors like bone morphogenetic protein-2 (BMP-2) for bone repair. Recently, we discovered that tetra-PEG hydrogels (Tetra gels) undergo gel-gel phase separation (GGPS) at low polymer content, resulting in hydrophobicity and tissue affinity. In this work, we examined the potential of a newer class of gel, the oligo-tetra-PEG gel (Oligo gel), as a growth factor-releasing scaffold. We investigated the extent of GGPS occurring in the two gels and assessed their ability to sustain BMP-2 release and osteogenic potential in a mouse calvarial defect model. The Oligo gel underwent a greater degree of GGPS than the Tetra gel, exhibiting higher turbidity, hydrophobicity, and pore formation. The Oligo gel demonstrated sustained protein or growth factor release over a 21-day period from protein release kinetics and osteogenic cell differentiation studies. Finally, BMP-2-loaded Oligo gels achieved complete regeneration of critical-sized calvarial defects within 28 days, significantly outperforming Tetra gels. The easy formulation, injectability, and capacity for sustained release makes the Oligo gel a promising candidate therapeutic biomaterial.