Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 14 Suppl 2: S6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26329639

RESUMEN

The delivery of healthcare services has experienced tremendous changes during the last years. Mobile health or mHealth is a key engine of advance in the forefront of this revolution. Although there exists a growing development of mobile health applications, there is a lack of tools specifically devised for their implementation. This work presents mHealthDroid, an open source Android implementation of a mHealth Framework designed to facilitate the rapid and easy development of mHealth and biomedical apps. The framework is particularly planned to leverage the potential of mobile devices such as smartphones or tablets, wearable sensors and portable biomedical systems. These devices are increasingly used for the monitoring and delivery of personal health care and wellbeing. The framework implements several functionalities to support resource and communication abstraction, biomedical data acquisition, health knowledge extraction, persistent data storage, adaptive visualization, system management and value-added services such as intelligent alerts, recommendations and guidelines. An exemplary application is also presented along this work to demonstrate the potential of mHealthDroid. This app is used to investigate on the analysis of human behavior, which is considered to be one of the most prominent areas in mHealth. An accurate activity recognition model is developed and successfully validated in both offline and online conditions.


Asunto(s)
Aplicaciones Móviles , Telemedicina/métodos , Registros Electrónicos de Salud , Conductas Relacionadas con la Salud , Humanos , Almacenamiento y Recuperación de la Información , Factores de Tiempo
2.
Sensors (Basel) ; 14(10): 19200-28, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320907

RESUMEN

The Internet of Things (IoT) enables the communication among smart objects promoting the pervasive presence around us of a variety of things or objects that are able to interact and cooperate jointly to reach common goals. IoT objects can obtain data from their context, such as the home, office, industry or body. These data can be combined to obtain new and more complex information applying data fusion processes. However, to apply data fusion algorithms in IoT environments, the full system must deal with distributed nodes, decentralized communication and support scalability and nodes dynamicity, among others restrictions. In this paper, a novel method to manage data acquisition and fusion based on a distributed service composition model is presented, improving the data treatment in IoT pervasive environments.

3.
Adv Colloid Interface Sci ; 222: 488-501, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25193545

RESUMEN

INTRODUCTION: The development of the coaxial double capillary 15 years ago opened up the possibility to undertake accurate desorption and penetration studies of interfacial layers in the pendant drop technique. Drop and bubble methods offer several advantages with respect to other interfacial techniques. They allow a more stringent control of the environmental conditions, use smaller amounts of material and provide a much higher interface/volume ratio than in conventional Langmuir Troughs. EXPERIMENTAL: The coaxial capillary was developed 15 years ago at the University of Granada as an accessory for the pendant drop surface film balance. It allows exchanging the subphase of the drop without disturbing the surface film and preserving the drop volume throughout the subphase exchange. Hence, this methodology enables one to carry out a great variety of interfacial studies well beyond the usual adsorption profiles. Penetration studies, sequential adsorption measurements, desorption kinetics, reversibility of adsorption and testing of enzymatic treatments on interfacial layers are amongst the principal applications. The coaxial capillary has been recently upgraded to a multi-exchange device which has boosted its applicability. It can be now used to address multilayer formation, create soft interfacial nano-composites such as membranes, polyelectrolyte assemblies and simulate in vitro digestion in a single droplet. APPLICATIONS: This review aims to compile the experimental work done, using the pendant drop subphase exchange in the last decade, and how its use has provided new insights into the surface/interfacial properties of many different materials. Special emphasis is placed on recent work regarding simulation of in vitro digestion in order to address issues relating to metabolism degradation profiles. The use of this methodology when dealing with interfacial studies allows setting the foundations of interfacial engineering technology. Based on subphase exchange experiments, we aim to develop models for competitive adsorption of different compounds at the interface and build up layer-by-layer interfacial structures. Future challenges comprise the design of finely adjusted nanoengineering systems, based on multilayer assemblies with tailored functionalities, to match the application demand.


Asunto(s)
Tensión Superficial , Adsorción , Animales , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Humanos , Hidrodinámica , Proteínas/química , Proteínas/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA