Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 564(7735): 263-267, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30487605

RESUMEN

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


Asunto(s)
Relaciones Materno-Fetales , Modelos Biológicos , Organoides/citología , Organoides/fisiología , Placentación , Técnicas de Cultivo de Tejidos , Trofoblastos/citología , Trofoblastos/fisiología , Diferenciación Celular , Movimiento Celular , Gonadotropina Coriónica/metabolismo , Metilación de ADN , Decidua/citología , Femenino , Factor 15 de Diferenciación de Crecimiento/metabolismo , Antígenos HLA/metabolismo , Humanos , Organoides/metabolismo , Embarazo , Glicoproteínas beta 1 Específicas del Embarazo/metabolismo , Transcriptoma/genética , Trofoblastos/metabolismo
2.
J Gen Virol ; 98(10): 2543-2555, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28933687

RESUMEN

Vaccinia virus produces two distinct infectious virions; the single-enveloped intracellular mature virus (IMV), which remains in the cell until cell lysis, and the double-enveloped extracellular enveloped virus (EEV), which mediates virus spread. The latter is derived from a triple-enveloped intracellular enveloped virus (IEV) precursor, which is transported to the cell periphery by the kinesin-1 motor complex. This transport involves the viral protein A36 as well as F12 and E2. A36 is an integral membrane protein associated with the outer virus envelope and is the only known direct link between virion and kinesin-1 complex. Yet in the absence of A36 virion egress still occurs on microtubules, albeit at reduced efficiency. In this paper double-fluorescent labelling of the capsid protein A5 and outer-envelope protein F13 was exploited to visualize IEV transport by live-cell imaging in the absence of either A36 or F12. During the generation of recombinant viruses expressing both A5-GFP and F13-mCherry a plaque size defect was identified that was particularly severe in viruses lacking A36. Electron microscopy showed that this phenotype was caused by abnormal wrapping of IMV to form IEV, and this resulted in reduced virus egress to the cell surface. The aberrant wrapping phenotype suggests that the fluorescent fusion protein interferes with an interaction of F13 with the IMV surface that is required for tight association between IMVs and wrapping membranes. The severity of this defect suggests that these viruses are imperfect tools for characterizing virus egress.

3.
Nat Protoc ; 15(10): 3441-3463, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908314

RESUMEN

The human placenta is essential for successful reproduction. There is great variation in the anatomy and development of the placenta in different species, meaning that animal models provide limited information about human placental development and function. Until recently, it has been impossible to isolate trophoblast cells from the human placenta that proliferate in vitro. This has limited our ability to understand pregnancy disorders. Generating an in vitro model that recapitulates the unique features of the human placenta has been challenging. The first in vitro model system of human trophoblast that could be cultured long term and differentiated to syncytiotrophoblast (SCT) and extravillous trophoblast (EVT) was a two-dimensional (2D) culture system of human trophoblast stem cells. Here, we describe a protocol to isolate trophoblast from first-trimester human placentas that can be grown long term in a three-dimensional (3D) organoid culture system. Trophoblast organoids can be established within 2-3 weeks, passaged every 7-10 d, and cultured for over a year. The structural organization of these human trophoblast organoids closely resembles the villous placenta with a layer of cytotrophoblast (VCT) that differentiates into superimposed SCT. Altering the composition of the medium leads to differentiation of the trophoblast organoids into HLA-G+ EVT cells which rapidly migrate and invade through the Matrigel droplet in which they are cultured. Our previous research confirmed that there is similarity between the trophoblast organoids and in vivo placentas in their transcriptomes and ability to produce placental hormones. This organoid culture system provides an experimental model to investigate human placental development and function as well as interactions of trophoblast cells with the local and systemic maternal environment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Placenta/citología , Trofoblastos/citología , Diferenciación Celular , Femenino , Humanos , Organoides/citología , Organoides/metabolismo , Placenta/metabolismo , Embarazo , Células Madre , Trofoblastos/metabolismo , Trofoblastos/fisiología
4.
Interface Focus ; 10(2): 20190079, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194932

RESUMEN

The endometrium is the secretory lining of the uterus that undergoes dynamic changes throughout the menstrual cycle in preparation for implantation and a pregnancy. Recently, endometrial organoids (EO) were established to study the glandular epithelium. We have built upon this advance and developed a multi-cellular model containing both endometrial stromal and epithelial cells. We use porous collagen scaffolds produced with controlled lyophilization to direct cellular organization, integrating organoids with primary isolates of stromal cells. The internal pore structure of the scaffold was optimized for stromal cell culture in a systematic study, finding an optimal average pore size of 101 µm. EO seeded organize to form a luminal-like epithelial layer, on the surface of the scaffold. The cells polarize with their apical surface carrying microvilli and cilia that face the pore cavities and their basal surface attaching to the scaffold with the formation of extracellular matrix proteins. Both cell types are hormone responsive on the scaffold, with hormone stimulation resulting in epithelial differentiation and stromal decidualization.

5.
J Cell Biol ; 162(7): 1223-32, 2003 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-14504265

RESUMEN

The mammalian nuclear lamina protein lamin B1 is posttranslationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxyl-terminal CAAX motif. In this work, we demonstrate that the CAAX endoprotease Rce1 is required for lamin B1 endoproteolysis, demonstrate an independent pool of proteolyzed but nonmethylated lamin B1, as well as fully processed lamin B1, in interphase nuclei, and show a role for methylation in the organization of lamin B1 into domains of the nuclear lamina. Deficiency in the endoproteolysis or methylation of lamin B1 results in loss of integrity and deformity of the nuclear lamina. These data show that the organization of the nuclear envelope and lamina is dependent on a mechanism involving the methylation of lamin B1, and they identify a potential mechanism of laminopathy involving a B-type lamin.


Asunto(s)
Endopeptidasas/metabolismo , Lamina Tipo B/metabolismo , Membrana Nuclear/enzimología , Animales , Anticuerpos Monoclonales , Células HeLa , Humanos , Interfase/fisiología , Lamina Tipo B/genética , Lamina Tipo B/inmunología , Metilación , Ratones , Ratones Endogámicos BALB C , Mitosis/fisiología
6.
Mol Biol Cell ; 16(2): 997-1010, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15591126

RESUMEN

Multiple copies of the mitochondrial genome in eukaryotic cells are organized into protein-DNA complexes called nucleoids. Mitochondrial genome repair mechanisms have been reported, but they are less well characterized than their nuclear counterparts. To expand our knowledge of mitochondrial genome maintenance, we have studied the localization of the BRCA1 protein, known to be involved in nuclear repair pathways. Our confocal and immunoelectron microscopy results show that BRCA1 is present in mitochondria of several human cancer cell lines and in primary breast and nasal epithelial cells. BRCA1 localization in mitochondria frequently overlapped that of nucleoids. Small interfering RNA-mediated knockdown of BRCA1 in human cancer cells (confirmed by Western blot) results in decreased nuclear, cytoplasmic, and mitochondrial staining after immunofluorescence microscopy, establishing the specificity of the BRCA1 immunolabeling. Furthermore, using cell fractionation, dephosphorylation, and enzyme protection experiments, we show that a 220-kDa phosphorylated isoform of BRCA1 is enriched in mitochondrial and nuclear fractions but reduced in cytoplasmic subcellular fractions. Submitochondrial fractionation confirmed the presence of BRCA1 protein in isolated mitoplasts. Because phosphorylation of BRCA1 and subsequent changes in subcellular localization are known to follow DNA damage, our data support a universal role for BRCA1 in the maintenance of genome integrity in both mitochondria and nucleus.


Asunto(s)
Proteína BRCA1/metabolismo , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Animales , Proteína BRCA1/ultraestructura , Western Blotting , Neoplasias de la Mama/patología , Neoplasias de la Mama/ultraestructura , Carcinoma/patología , Carcinoma/ultraestructura , Fraccionamiento Celular , Línea Celular Tumoral , Núcleo Celular/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa , Humanos , Inmunohistoquímica , Hígado/metabolismo , Microscopía Confocal , Mitocondrias/ultraestructura , Fosforilación , ARN Interferente Pequeño/metabolismo , Ratas , Fracciones Subcelulares
7.
Biochemistry ; 41(46): 13539-47, 2002 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-12427014

RESUMEN

A region near the C-terminus of human acetylcholinesterase (AChE) is weakly homologous with the N-terminus of the Alzheimer's disease amyloid-beta peptide. We report that a 14-amino acid synthetic polypeptide whose sequence corresponds to residues 586-599 of the human synaptic or T form of AChE assembles into amyloid fibrils under physiological conditions. The fibrils have all the classical characteristics of amyloid: they have a diameter of 6-7 nm and bind both Congo red and thioflavin-T. Furthermore, the kinetics of assembly indicate that fibril formation proceeds via a two-step nucleation-dependent polymerization pathway, and a transition in the peptide conformation from random coil to beta-sheet is observed during fibril formation using far-UV circular dichroism spectroscopy. We also show that the peptide in aggregated fibrillar form has a toxic effect upon PC-12 cells in vitro. AChE normally resides mainly on cholinergic neuronal membranes, but is abnormally localized to senile plaques in Alzheimer's disease. Recently, an in vitro interaction between AChE and A beta, the principal constituent of the amyloid fibrils in senile plaques, has been documented. The presence of a fibrillogenic region within AChE may be relevant to the interaction of AChE with amyloid fibrils formed by Abeta.


Asunto(s)
Acetilcolinesterasa/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Fragmentos de Péptidos/farmacología , Acetilcolinesterasa/aislamiento & purificación , Animales , Benzotiazoles , Biotinilación , División Celular/fisiología , Dicroismo Circular , Colorantes/metabolismo , Rojo Congo/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Microscopía Electrónica , Ovillos Neurofibrilares/ultraestructura , Células PC12/metabolismo , Fragmentos de Péptidos/síntesis química , Unión Proteica , Ratas , Tiazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA