Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 152(19): 194103, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33687235

RESUMEN

CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.

2.
J Chem Phys ; 149(10): 104702, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30219020

RESUMEN

The accuracy of density functional theory (DFT) based kinetic models for electrocatalysis is diminished by spurious electron delocalization effects, which manifest as uncertainties in the predicted values of reaction and activation energies. In this work, we present a constrained DFT (CDFT) approach to alleviate overdelocalization effects in the Volmer-Heyrovsky mechanism of the hydrogen evolution reaction (HER). This method is applied a posteriori to configurations sampled along a reaction path to correct their relative stabilities. Concretely, the first step of this approach involves describing the reaction in terms of a set of diabatic states that are constructed by imposing suitable density constraints on the system. Refined reaction energy profiles are then recovered by performing a configuration interaction (CDFT-CI) calculation within the basis spanned by the diabatic states. After a careful validation of the proposed method, we examined HER catalysis on open-ended carbon nanotubes and discovered that CDFT-CI increased activation energies and decreased reaction energies relative to DFT predictions. We believe that a similar approach could also be adopted to treat overdelocalization effects in other electrocatalytic proton-coupled electron transfer reactions, e.g., in the oxygen reduction reaction.

3.
Phys Chem Chem Phys ; 19(24): 16231-16241, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28607979

RESUMEN

We report a comprehensive computational study of the intricate structure-property relationships governing the hydrogen adsorption trends on MoS2 edges with varying S- and H-coverages, as well as provide insights into the role of individual adsorption sites. Additionally, the effect of single- and dual S-vacancies in the basal plane on the adsorption energetics is assessed, likewise with an emphasis on the H-coverage dependency. The employed edge/site-selective approach reveals significant variations in the adsorption free energies, ranging between ∼±1.0 eV for the different edges-types and S-saturations, including differences of even as much as ∼1.2 eV between sites on the same edge. The incrementally increasing hydrogen coverage is seen to mainly weaken the adsorption, but intriguingly for certain configurations a stabilizing effect is also observed. The strengthened binding is seen to be coupled with significant surface restructuring, most notably the splitting of terminal S2-dimers. Our work links the energetics of hydrogen adsorption on 2H-MoS2 to both static and dynamic geometrical features and quantifies the observed trends as a function of H-coverage, thus illustrating the complex structure/activity relationships of the MoS2 catalyst. The results of this systematical study aims to serve as guidance for experimentalists by suggesting feasible edge/S-coverage combinations, the synthesis of which would potentially yield the most optimally performing HER-catalysts.

4.
Phys Chem Chem Phys ; 18(4): 2924-31, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26788999

RESUMEN

Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacitor with a potential difference equal to the work function difference, and with most of the transferred charge located directly at the contact interface. Identical results were obtained by considering surface contacts as well as by employing a continuum model, confirming that this model is general and can be applied to any multimetallic structure regardless of geometry or size (going from nano- to macroscale). Furthermore, the equilibrium Fermi level was found to be strongly dependent on the surface coverage of different metals, enabling the construction of scaling relations. We believe that the charge transfer due to Fermi level equilibration has a profound effect on the catalytic, electrocatalytic and other properties of bimetallic particles. Additionally, bimetallic nanoparticles are expected to have very interesting self-assembly for large superstructures due to the surface charge anisotropy between the two metals.

5.
Phys Chem Chem Phys ; 16(33): 17437-46, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-24733455

RESUMEN

The dissolution of NaCl has been systematically investigated by employing ab initio molecular dynamics (AIMD) on different NaCl nanocrystals as well as on a surface system immersed in water. We discovered a complex dissolution process simultaneously involving multiple ions initiated at the corner sites of the crystal. Our simulations indicated a difference in the dissolution rates of sodium and chlorine. While sodiums readily became partially solvated, chlorines more frequently transitioned into the fully solvated state leading to an overall greater dissolution rate for Cl. We determined that this difference arises due to faster water mediated elongations of individual ionic bonds to Na, but a significantly slower process for the last bond in comparison to Cl. In an attempt to investigate this phenomenon further, we performed metadynamics based free energy simulations on a surface slab presenting corner sites similar to those in cubic crystals, aiming to extract the dissolution free energy profile of corner ions. In qualitative agreement with the nanocrystal simulations, this revealed a shallower first free energy minimum for Na, but no statistically significant difference in the corresponding barriers and inconclusive results for the latter stage. Finally, simulations of smaller NaCl crystals illustrated how dissolution proceeds beyond the point of crystal lattice collapse, highlighting the strength of solvated ion interactions.

6.
Phys Chem Chem Phys ; 16(41): 22545-54, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25227553

RESUMEN

We have used ab initio molecular dynamics (AIMD) simulations to study the interaction of water with the NaCl surface. As expected, we find that water forms several ordered hydration layers, with the first hydration layer having water molecules aligned so that oxygen atoms are on average situated above Na sites. In an attempt to understand the dissolution of NaCl in water, we have then combined AIMD with constrained barrier searches, to calculate the dissolution energetics of Na(+) and Cl(-) ions from terraces, steps, corners and kinks of the (100) surface. We find that the barrier heights show a systematic reduction from the most stable flat terrace sites, through steps to the smallest barriers for corner and kink sites. Generally, the barriers for removal of Na(+) ions are slightly lower than for Cl(-) ions. Finally, we use our calculated barriers in a Kinetic Monte Carlo as a first order model of the dissolution process.

7.
J Chem Theory Comput ; 13(2): 587-601, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28009515

RESUMEN

Constrained density functional theory (CDFT) is a versatile tool for probing the kinetics of electron transfer (ET) reactions. In this work, we present a well-scaling parallel CDFT implementation relying on a mixed basis set of Gaussian functions and plane waves, which has been specifically tailored to investigate condensed phase ET reactions using an explicit, quantum chemical representation of the solvent. The accuracy of our implementation is validated against previous theoretical results for predicting electronic couplings and charge transfer energies. Subsequently, we demonstrate the efficiency of our method by studying the intramolecular ET reaction of an organic mixed-valence compound in water using a CDFT based molecular dynamics simulation.

8.
J Phys Chem Lett ; 6(19): 3956-60, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26722898

RESUMEN

Carbon nanotubes (CNTs), while inactive by themselves, are often used as a platform in the search of new catalysts for the hydrogen evolution reaction (HER) by introducing metal nanoparticles or other dopants. Here, we examine the HER activity of pristine open-ended CNTs considering both the effects of chirality and hydrogen coverage using electronic structure calculations. The results indicate that the formation of different 5-ring structures at the end of the CNT introduces surface sites that are highly active toward HER, whereas the activity of traditional 6-ring sites is not greatly altered by tube termination. At fixed hydrogen coverage, the enhanced activity of these sites was attributed to valence orbitals residing close to the highest occupied molecular level facilitating electron transfer to protons.

9.
J Phys Chem B ; 118(22): 5957-70, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24814815

RESUMEN

Ion interactions and partitioning at the water-organic solvent interface and the solvation characteristics have been characterized by molecular dynamics simulations. More precisely, we study sodium cation transport through water-cyclohexane, water-1,2-dichloroethane, and water-pentanol interfaces, providing a systematic characterization of the ion interfacial behavior including barriers against entering the organic phase as well as characterization of the interfaces in the presence of the ions. We find a sodium depletion zone at the liquid-liquid interface and persistent hydration of the cation when entering the organic phase. The barrier against the cation entering the organic phase and ion hydration depend strongly on specific characteristics of the organic solvent. The strength of both barrier and hydration shell binding (persistence of the cation hydration) go with the polarity and the surface tension at the interface, that is, both decrease in order cyclohexane-water > 1,2-dichloroethane-water > pentanol-water. However, the size of the hydration shell measured in water molecules bound by the cation entering the less polar phase behaves oppositely, with the cation carrying most water to the pentanol phase and a much smaller in size, but very tightly bound water shell to cyclohexane. We discuss the implications of the observations for ion transport through the interface of immiscible or poorly miscible liquids and for materials of confined ion transport such as ion conduction membranes or biological ion channel activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA