Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Sport Rehabil ; 31(7): 842-848, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413683

RESUMEN

OBJECTIVES: The purpose of this study was to compare functional movement screen (FMS) scores and drop vertical jump (DVJ) kinematics between those with and without anterior cruciate ligament reconstruction (ACLR), and to evaluate the association between FMS composite score and DVJ kinematics. DESIGN: Cross-sectional. PARTICIPANTS: Sixty individuals with and without a history of ACLR. MAIN OUTCOME MEASURES: Composite FMS score and the dorsiflexion, knee-flexion, hip-flexion, knee abduction, hip adduction, and trunk-flexion angles during a DVJ. RESULTS: The FMS scores did not differ between groups (P > .05). There were smaller peak and initial contact hip-flexion angles in the ACLR and contralateral limbs compared with controls, and smaller peak dorsiflexion angles in the ACLR compared with contralateral limbs (P < .05). Lower FMS score was associated with a smaller peak dorsiflexion angle, smaller peak knee-flexion angle, and larger peak knee abduction angle in the ACLR limb (ΔR2 = .14-.23); a smaller peak dorsiflexion angle and smaller peak knee-flexion angle in the contralateral limb (ΔR2 = .17-.19); and a smaller peak dorsiflexion angle, smaller peak knee-flexion angle, and larger peak knee abduction angle in the control limb (ΔR2 = .16-.22). CONCLUSION: The FMS scores did not differ between groups, but were associated with DVJ kinematics and should be a complementary rather than substitute assessment.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Lesiones del Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Estudios Transversales , Humanos , Articulación de la Rodilla , Movimiento
2.
Sports Biomech ; : 1-16, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767326

RESUMEN

Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.

3.
J Orthop Res ; 42(2): 349-359, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37772457

RESUMEN

The purpose was to (1) compare the effect of a walking bout on femoral cartilage deformation between limbs with and without anterior cruciate ligament reconstruction (ACLR) and (2) examine the association between gait kinetics and the magnitude of cartilage deformation. A total of 30 individuals with primary unilateral ACLR completed this study [14 male, 16 female; age = 22.57 (3.78) years; body mass index (BMI) = 25.88 (5.68) kg/m2 ; time since ACLR = 61.00 (16.43) months]. Overground walking biomechanics were assessed on day 1, and a 30-min walking bout or 30-min resting bout (control) were completed on days 2 and 3 (counterbalanced order). Femoral cartilage thickness was measured using ultrasound before, immediately following, and 30-min following each intervention. Linear mixed effects models compared the effect of walking on cartilage thickness between the ACLR and contralateral limbs after adjusting for sex, BMI, speed, and the number of steps. Stepwise regression examined the association between the external knee flexion and adduction moments and cartilage deformation following walking. There was a significant limb × time interaction for medial cartilage thickness. Post hoc analyses indicated that cartilage thickness decreased immediately following walking in the contralateral but not ACLR limb. Main effects of limb were observed for medial, central, and lateral cartilage thickness indicating thicker cartilage in the ACLR compared with contralateral limb. A higher knee adduction moment was associated with greater cartilage deformation in the ACLR limb. Femoral cartilage in the ACLR limb exhibited a less dynamic response to walking than the uninvolved limb, which may be due to habitual underloading during gait.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Lesiones del Ligamento Cruzado Anterior/cirugía , Caminata/fisiología , Articulación de la Rodilla/fisiología , Marcha/fisiología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/cirugía , Fenómenos Biomecánicos
4.
J Electromyogr Kinesiol ; 68: 102723, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36402073

RESUMEN

The foot progression angle (FPA) influences knee loading during gait, but its determinants are unclear. The purpose of this study was to compare FPA between males and females and also examine the association between lower extremity kinematics during gait, hip strength, and the FPA. 25 males and 25 females completed 5 gait trials while FPA and frontal and transverse plane hip and knee angles were calculated from the dominant limb during the foot flat portion of stance. Hip extensor/flexor, abductor/adductor, and internal/external rotator strength were evaluated using maximum voluntary isometric contractions. One-way MANOVAs compared gait and strength outcomes. Stepwise regression assessed the association between FPA, and MVIC and kinematics after accounting for speed in males and females. There was no difference in FPA between sexes (p > 0.05), but females had greater frontal and transverse plane hip angles compared with males (all p < 0.05). Greater hip abduction (p = 0.02) strength was associated with greater FPA, but only in males. In males, greater hip abductor strength may contribute to a more neutral position of the foot during gait, which could help maintain an equal knee loading distribution. Our results suggest that there are sex specific control strategies to achieve a similar FPA during gait.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Masculino , Femenino , Humanos , Músculo Esquelético/fisiología , Extremidad Inferior/fisiología , Cadera , Articulación de la Rodilla/fisiología , Marcha/fisiología , Fuerza Muscular/fisiología , Fenómenos Biomecánicos/fisiología
5.
Hum Mov Sci ; 91: 103125, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37515958

RESUMEN

BACKGROUND: Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder affecting multiple functional parameters. This study examined postural stability and associated gait and neuromuscular factors in young adults with PWS. METHODS: Participants included 10 adults with PWS [7 M/3F; Body Fat % 40.61 ± 7.79]; ten normal weight (NW) adults [7 M/3F; Body Fat % 23.42 ± 7.0]; ten obese (OB) adults [7 M/3F; Body Fat % 42.40 ± 5.62]. Participants completed the Sensory Organization Test (SOT)®. Condition (C) specific and a composite equilibrium score (CES) were calculated (maximum = 100). Quadriceps strength was assessed using an isokinetic dynamometer. Three-dimensional gait analyses were completed along a 10 m walkway using a motion capture system and two force plates. A gait stability ratio (GSR) was computed from gait speed and step length (steps/m). RESULTS: The PWS group had lower scores for C1, C3, C4 and CES compared to the NW (p < .039 for all) and lower scores for C4 and CES than the OB (p < .019 for both) groups, respectively. In C5 (eyes closed, sway-referenced support) and C6 (sway-referenced vision and support), 33.3% of participants with PWS fell during the first trial in both conditions (X2 [2] 7.436, p = .024) and (X2 [2] 7.436, p = .024) but no participant in the other groups fell. Those with PWS showed higher GSR than participants with NW (p = .005) and those with obesity (p = .045). CONCLUSION: Individuals with PWS had more difficulty maintaining standing balance when relying on information from the somatosensory (C3), visual-vestibular (C4) and vestibular systems (C5, C6). A more stable walk was related to shorter steps, slower velocity and reduced peak quadriceps torque. Participation in multisensory activities that require appropriate prioritization of sensory system(s) input for controlling balance in altered sensory environments should be routinely included. In addition, exercises targeting muscular force and power should be included as part of exercise programming in PWS.


Asunto(s)
Síndrome de Prader-Willi , Adulto Joven , Humanos , Obesidad , Marcha , Caminata , Ejercicio Físico
6.
J Orthop Res ; 41(5): 994-1003, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36205181

RESUMEN

Body mass index (BMI) and history of anterior cruciate ligament reconstruction (ACLR) independently influence gait biomechanics and knee osteoarthritis risk, but the interaction between these factors is unclear. The purpose of this study was to compare gait biomechanics between individuals with and without ACLR, and with and without overweight/obesity. We examined 104 individuals divided into four groups: with and without ACLR, and with low or high BMI (n = 26 per group). Three-dimensional gait biomechanics were evaluated at preferred speed. The peak vertical ground reaction force, knee flexion angle and excursion, external knee flexion moment, and external knee adduction moment were extracted for analysis. Gait features were compared between groups using 2 (with and without overweight/obesity) × 2 (with and without ACLR) analysis of variance. Primary findings indicated that those with ACLR and high BMI had a larger external knee adduction moment compared with those with low BMI and with (p = 0.004) and without ACLR (p = 0.005), and compared with those without ACLR and high BMI (p = 0.001). The main effects of ACLR and BMI group were found for the knee flexion moment, and those with ACLR and with high BMI had lower knee flexion moments compared with those without ACLR (p = 0.031) and with low BMI (p = 0.021), respectively. Data suggest that individuals with ACLR and high BMI may benefit from additional intervention targeting the knee adduction moment. Moreover, lower external knee flexion moments in those with high BMI and ACLR were consistent, but high BMI did not exacerbate deficits in the knee flexion moment in those with ACLR. [Correction added on 9 November 2022, after first online publication: In the preceding sentence, for clarity, the words "reductions in the lower" was removed from the initial sentence to read "Moreover, lower external knee flexion moments".].


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Humanos , Índice de Masa Corporal , Fenómenos Biomecánicos , Sobrepeso/cirugía , Marcha , Articulación de la Rodilla/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía
7.
Cartilage ; : 19476035231205682, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846037

RESUMEN

BACKGROUND: Articular cartilage is important for knee function and can be imaged using ultrasound. The purpose was to compare femoral cartilage thickness and echo intensity (EI) measured at 90° and 140° of knee flexion and between limbs in a cohort with unilateral anterior cruciate ligament reconstruction (ACLR). We also examined associations between gait biomechanics and cartilage outcomes. METHODS: Twenty-seven individuals with primary unilateral ACLR participated (12 men, 15 women; age = 22.3 ± 3.8 years; time since ACLR = 71.2 ± 47.2 months). Ultrasound was used to obtain femoral cartilage measurements. Gait outcomes included peak KFA (knee flexion angle) and peak external knee flexion moment (KFM). Cartilage outcomes were compared using a 2 (position) × 2 (limb) repeated measures ANOVA (analysis of variance). Gait and cartilage associations were assessed using linear regression. FINDINGS: There were no position × limb interactions for any cartilage outcome (all P > 0.05). Medial (P = 0.038) and central cartilage (P < 0.001) were thicker, whereas central (P = 0.029) and lateral cartilage EI (P = 0.003) were lower when measured at 90° than those at 140° of knee flexion. Medial cartilage was thicker in the ACLR than that in the contralateral limb (P = 0.016). A larger KFM was associated with thicker medial cartilage (ΔR2 = 0.146, P = 0.021) and central cartilage (ΔR2 = 0.159, P = 0.039) measured at 140° of knee flexion in the ACLR limb but not at 90°. INTERPRETATION: Findings suggest that imaging position influences cartilage thickness and EI measurements in individuals with ACLR and should be considered in study designs and clinical evaluation. A greater KFM was associated with thicker cartilage within specific portions of the distal femur.

8.
Bone Rep ; 19: 101700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37520935

RESUMEN

Introduction: The incidence of osteopenia and osteoporosis is of concern in adults with Prader-Willi syndrome (PWS). Walking generates reaction forces that could stimulate bone mineralization and is popular in people with PWS. This study compared bone parameters and ground reaction forces (GRF) during gait between young adults with PWS and without PWS and explored associations between bone and GRFs during gait. Methods: 10 adults with PWS, 10 controls with obesity (OB) and 10 with normal weight (NW) matched on sex participated. Segmental and full body dual-energy x-ray absorptiometry scans provided femoral neck, spine, total body minus the head bone mineral density (BMD), bone mineral content (BMC). Vertical GRF, vertical impulse, posterior force and negative impulse were measured during 5 walking trials at a self-selected speed along a 10 m runway. Results: Multivariate analyses of variance showed that adults with PWS (n = 7-8) had hip and body BMD and BMC comparable (p > .050) to NW and lower (p < .050) than OB. Adults with PWS showed slower speed than NW (p < .050) but similar to OB (p > .050). Adults with PWS presented lower absolute vertical GRF, vertical impulse and negative impulse than OB (p < .050). Pearson r correlations (p < .050) in those with PWS (n = 7-8) indicated that femoral neck BMC was associated with vertical GRF (r = 0.716), vertical impulse (r = 0.780), posterior force (r = -0.805), and negative impulse (r = -0.748). Spine BMC was associated with speed (r = 0.829) and body BMD was associated with speed (r = 0.893), and posterior force (r = -0.780). Conclusions: Increased BMC in the femoral neck and body were associated with larger breaking forces during walking, a phenomenon normally observed at greater gait speeds. Faster walking speed was associated with greater BMC in the spine and body. Our preliminary results suggest that young adults with PWS could potentially benefit from faster walking for bone health; however, larger prospective studies are needed to confirm this.

9.
Gait Posture ; 96: 265-270, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35709610

RESUMEN

BACKGROUND: Knee extensor (KE) weakness is commonly exhibited in individuals with knee osteoarthritis (KOA) and may contribute to disability due an increased muscle functional demand and resulting compensatory gait strategies during locomotion. Muscle functional demand is defined as the percentage of maximal strength that is used during a task. RESEARCH QUESTION: The study aim was to quantify KE functional demand in KOA, the impact of walking speed and the relationships with the relative joint contribution to total limb work. METHODS: Fourteen individuals with symptomatic KOA underwent gait analysis at preferred and faster speeds and isokinetic dynamometry for KE maximum voluntary isometric torque. The KE functional demand as well as the relative and peak joint work and powers were calculated. Paired samples t-test was used to compare functional demand and relative work between speeds and Pearson's correlation was used to assess the relationship between relative work and functional demand values (α = 0.05). RESULTS: The KE functional demand was 36.0 ± 15.7 % for the preferred speed and significantly higher at 49.8 ± 16.1 % for the faster speed, (t(13) = -5.45, p .05). Knee flexion moment was also significantly higher for the faster speed (t(13) = -5.54, p .001). There were significant relationships between fast speed functional demand and relative ankle negative power (r = -0.57) and relative ankle positive work (r = 0.66), (all p .05). SIGNIFICANCE: The results suggest that as functional demand nears or exceeds 50 % of the muscle capacity individuals with KOA reduce the relative effort at the knee and use an ankle-based compensation strategy to meet task demands.


Asunto(s)
Osteoartritis de la Rodilla , Marcha/fisiología , Humanos , Rodilla , Articulación de la Rodilla , Velocidad al Caminar
10.
J Biomech ; 141: 111213, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35792406

RESUMEN

Individuals with Prader-Willi Syndrome (PWS) have reduced mobility, which may be due to altered gait biomechanics. This study compared lower extremity intersegmental coordination and joint kinetics in adults with and without PWS. Walking biomechanics were evaluated in 10 adults with PWS and 10 controls without and 10 with obesity. The foot-shank and shank-thigh coordination was evaluated using modified vector coding and compared between groups using Kruskal-Wallis and Mann-Whitney U tests. The total support moment was summed from the ankle, knee, and hip extensor moments; and relative joint contributions were expressed as a percentage and compared between groups using one-way MANOVA. The group with PWS had greater exclusive shank segment rotation during later stance compared with controls with (p < 0.001) and without obesity (p < 0.001). The group with PWS also had a smaller absolute total support moment than controls with obesity during early and late stance (both p < 0.001), and lower normalized total support moment compared to controls without obesity during early stance (p = 0.019) and compared to controls with obesity during late stance (p = 0.004). Extensor moment contributions was similar between groups during early and late stance (all p > 0.05). Findings suggest a flat-footed gait pattern in PWS during late stance, which may negatively influence propulsion and speed. Moreover, those with PWS had lower total support moments than controls during early and late stance, but similar relative extensor contributions when walking at self-selected speeds. As such, improving overall torque generation in the lower extremity may be useful to improve stability and mobility during gait in PWS.


Asunto(s)
Síndrome de Prader-Willi , Adulto , Fenómenos Biomecánicos , Marcha , Humanos , Cinética , Articulación de la Rodilla , Extremidad Inferior , Obesidad , Caminata
11.
Gait Posture ; 92: 421-427, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973582

RESUMEN

BACKGROUND: Individuals with obesity have impaired gait and muscle function that may contribute to reduced mobility and increased fall risk. RESEARCH QUESTIONS: (1) what is the difference in spatiotemporal gait parameters and joint kinetics between individuals with and without obesity; (2) what is the association between spatiotemporal gait parameters, joint kinetics, and quadriceps function? METHODS: Forty-eight young adults with obesity (BMI = 33.0 ± 4.1 kg/m2) and 48 without obesity (BMI = 21.6 ± 1.7 kg/m2) completed assessments of quadriceps function (peak torque and early/late rate of torque development (RTD)) and walking biomechanics at self-selected speed. Spatiotemporal gait parameters (stance time, double support time, double support to stance ratio, step width, step length, cadence, and gait stability ratio (GSR)) and joint kinetics (total support moment, and relative contribution from extensor moments) were compared using one-way MANOVAs. Partial correlation examined the association between the total support moment and quadriceps function, and spatiotemporal gait parameters controlling for sex and speed. RESULTS: Individuals with obesity walked with longer stance (p = 0.01), longer double-limb support (p < 0.001), wider steps (p < 0.001), lower cadence (p = 0.03), and a greater absolute (p < 0.001) but lesser normalized total support moment (p = 0.03) compared with adults without obesity. In those with obesity, greater PT was associated with less double limb support (p = 0.011) and smaller double support to stance ratio (p = 0.006); greater early RTD was associated with less double limb support (r = -0.455, p = 0.0021), less stance time (r = -0.384, p = 0.008), and a smaller double support to stance ratio (r = -0.371, p = 0.011). In those without obesity, a larger total support moment was associated with longer step length (r = 0.512, p < 0.001), lesser cadence (r = -0.497, p < 0.001), and smaller GSR (-0.460, p = 0.001). SIGNIFICANCE: Individuals with obesity walk with altered spatiotemporal gait parameters and joint kinetics that may compromise stability. Extended periods of support may be a strategy used by individuals with obesity to increase stability during gait and accomodate insufficient quadriceps function.


Asunto(s)
Marcha , Caminata , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Cinética , Obesidad/complicaciones , Músculo Cuádriceps , Caminata/fisiología , Adulto Joven
12.
Gait Posture ; 83: 217-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171375

RESUMEN

BACKGROUND: Obesity and female sex are independent risk factors for knee osteoarthritis and also influence gait mechanics. However, the interaction between obesity and sex on gait mechanics is unclear, which may have implications for tailored gait modification strategies. RESEARCH QUESTION: The purpose of this study was to examine the influence of obesity and sex on sagittal and frontal plane knee mechanics during gait in young adults. METHODS: Forty-eight individuals with (BMI = 33.03 ±â€¯0.59; sex:50 % female; age:21.9 ±â€¯2.6 years) and 48 without obesity (BMI:21.59 ±â€¯0.25; sex:50 % female; age:22.9 ±â€¯3.57 years) matched on age and sex completed over-ground gait assessments at a self-selected speed. Two (BMI) by two (sex) analysis of variance was used to compare knee biomechanics during the first half of stance in the sagittal (knee flexion moment [KFM] and excursion [KFE]) and frontal plane (first peak knee adduction moment [KAM], knee varus velocity [KVV]). RESULTS: We observed a BMI by sex interaction for normalized KFM (P = 0.03). Females had smaller normalized KFM compared to males (P = 0.03), but only in individuals without obesity. Males without obesity had larger normalized KFM compared to males with obesity (P = 0.01), while females did not differ between BMI groups. We observed main effects of sex and BMI group, where females exhibited greater normalized KAM (P < 0.01) and KVV (P < 0.01) compared to males, and individuals with obesity walked with greater KVV compared to those without obesity (P < 0.01). All absolute joint moments were greater in individuals with obesity (all P<0.01) and males had greater absolute KFM compared to females (P < 0.01). SIGNIFICANCE: We observed sex differences in gait mechanics, however, KFM differences between males and females were only evident in individuals without obesity. Further, females and individuals with obesity had a larger KAM and KVV, which may contribute to larger medial compartment joint loading.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Índice de Masa Corporal , Rodilla/fisiopatología , Obesidad/complicaciones , Osteoartritis de la Rodilla/etiología , Caminata/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Obesidad/fisiopatología , Osteoartritis de la Rodilla/fisiopatología , Factores de Riesgo , Factores Sexuales , Adulto Joven
13.
Med Sci Sports Exerc ; 52(10): 2189-2197, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32936593

RESUMEN

PURPOSE: Prader-Willi Syndrome (PWS) is a form of congenital obesity characterized by excessive body fat, hypotonia, muscle weakness, and physical/cognitive disability. However, the sources of muscle dysfunction and their contribution to mobility are unclear. The purposes of this study were to 1) compare plantar flexor function between adults with and without PWS; and 2) to examine the relationship between plantar flexor function and gait speed in adults with PWS. METHODS: Participants included 10 adults with PWS, 10 adults without PWS and with obesity, and 10 adults without PWS and without obesity (matched on age and sex). Plantar flexor function was assessed using isokinetic dynamometry (peak torque [PT], early/late rate of torque development [RTD]), Hoffman reflex (H/M ratio), ultrasound imaging (cross-sectional area [CSA], echo intensity, pennation angle, and fascicle length), and peak propulsive force and plantar flexor moment during gait. Outcomes were compared between groups using one-way MANOVA. Associations between plantar flexor outcomes and gait speed were assessed using Pearson correlation in the PWS group. RESULTS: Adults with PWS had lower absolute and normalized early RTD, and lower H/M ratio than controls with and without obesity; lower absolute PT and late RTD than controls with obesity (all P < 0.05). Cross-sectional area, propulsive force, and plantarflexor moment were lower, and echo intensity was higher, in adults with PWS compared with controls without obesity (all P < 0.05). Greater absolute PT (r = 0.64), absolute early RTD (r = 0.62), absolute late RTD (r = 0.64), gastrocnemii CSA (r = 0.55), and propulsive force (r = 0.58) were associated with faster gait speed (all P < 0.05). CONCLUSIONS: Adults with PWS have impaired plantar flexor function likely attributable to reduced neuromuscular function and altered muscle morphology, which are associated with slower gait speeds.


Asunto(s)
Pie/fisiopatología , Músculo Esquelético/fisiopatología , Síndrome de Prader-Willi/fisiopatología , Velocidad al Caminar , Adulto , Índice de Masa Corporal , Estudios Transversales , Femenino , Pie/diagnóstico por imagen , Pie/fisiología , Humanos , Masculino , Neuronas Motoras/fisiología , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Obesidad/congénito , Obesidad/fisiopatología , Síndrome de Prader-Willi/diagnóstico por imagen , Reflejo Anormal , Torque , Ultrasonografía , Adulto Joven
14.
J Orthop Res ; 38(12): 2685-2695, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32162713

RESUMEN

This study compared femoral cartilage characteristics between age- and sex-matched individuals with (n = 48, age = 22.8 ± 3.5 years; body mass index [BMI] = 33.1 ± 4.1 kg/m2 ) and without obesity (n = 48 age = 22.0 ± 2.6 years; BMI = 21.7 ± 1.7 kg/m2 ) and evaluated the associations between body composition, quadriceps function, and gait kinetics with femoral cartilage characteristics. Medial and lateral femoral cartilage thickness, medial:lateral thickness ratio and medial and lateral cartilage echo intensity were measured using ultrasound imaging. Body composition was assessed using air displacement plethysmography. Quadriceps function was assessed via maximal isometric knee extension. Three-dimensional gait biomechanics were recorded to extract peak external knee flexion and adduction moments, and peak loading rate of the vertical ground reaction force. Cartilage outcomes were compared between groups using one-way multivariate analysis of variance. Stepwise moderated regression evaluated the association between body composition, quadriceps function, and gait kinetics with femoral cartilage outcomes in individuals with and without obesity. Medial (75.24 vs 65.84; P < .001, d = 1.02) and lateral (58.81 vs 52.22; P < .001, d = 0.78) femoral cartilage echo intensity were higher in individuals with compared with those without obesity. A higher body fat percentage was associated with higher medial and lateral cartilage echo intensity (ΔR2 = 0.09-0.12) in individuals with obesity. A higher knee adduction moment was associated with a larger medial:lateral thickness ratio (ΔR2 = 0.09) in individuals without obesity. No associations were found between quadriceps function and cartilage outcomes. These findings suggest that high body fat in adults with obesity is associated with cartilage echo intensity. The obese body mass index was also associated with a lack of a positive relationship between cartilage thickness and joint loading during walking.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Marcha , Obesidad/fisiopatología , Osteoartritis de la Rodilla/etiología , Índice de Masa Corporal , Cartílago Articular/patología , Estudios de Casos y Controles , Estudios Transversales , Femenino , Fémur/patología , Humanos , Masculino , Obesidad/complicaciones , Obesidad/patología , Osteoartritis de la Rodilla/fisiopatología , Músculo Cuádriceps/fisiología , Ultrasonografía , Adulto Joven
15.
J Athl Train ; 55(3): 246-254, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31951147

RESUMEN

CONTEXT: Ultrasound imaging provides a cost-effective method of measuring quadriceps morphology, which may be related to self-reported function after anterior cruciate ligament reconstruction (ACLR). OBJECTIVE: To compare quadriceps morphology and strength between limbs in individuals with ACLR and matched control limbs and determine their associations with self-reported function. DESIGN: Cross-sectional study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Forty-two individuals with ACLR (females = 66%; age = 21.8 ± 2.6 years; time since ACLR = 50.5 ± 29.4 months) and 37 controls (females = 73%; age = 21.7 ± 1.2 years). MAIN OUTCOME MEASURE(S): Quadriceps peak torque (PT) and rate of torque development were assessed bilaterally. Ultrasonography was used to measure the cross-sectional area (CSA) and echo intensity (EI) of the rectus femoris, vastus lateralis (VL), and vastus medialis. Self-reported function was assessed via the International Knee Documentation Committee (IKDC) score and Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales. Paired-samples t tests were calculated to compare involved and uninvolved limbs. Independent t tests were conducted to compare groups (α = .05). Linear regression was performed to analyze associations between quadriceps function and self-reported function after accounting for time since ACLR, activity level, and sex, and models for EI added subcutaneous fat as a covariate. RESULTS: Isometric PT did not differ between limbs or groups. Involved limbs had a lower rate of torque development compared with the control (P = .01) but not the uninvolved limbs (P = .08). Vastus lateralis CSA was smaller in the involved than in the uninvolved (P < .01) but not the control limbs (P = .10). Larger VL CSA (ΔR2 = 0.103) and lower VL EI (ΔR2 = 0.076) were associated with a higher IKDC score (P < .05). Larger VL CSA was associated with greater KOOS Symptoms (ΔR2 = 0.09, P = .043) and Sport and Recreation (ΔR2 = 0.125, P = .014) scores. Lower VL EI was associated with higher KOOS Symptoms (ΔR2 = 0.104, P = .03) and Quality of Life (ΔR2 = 0.113, P = .01) scores. Quadriceps PT and rate of torque development were not associated with IKDC or KOOS subscale scores. CONCLUSIONS: Quadriceps morphology was associated with self-reported function in individuals with ACLR and may provide unique assessments of quadriceps function.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior , Fuerza Muscular/fisiología , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/fisiopatología , Lesiones del Ligamento Cruzado Anterior/patología , Traumatismos en Atletas/patología , Traumatismos en Atletas/fisiopatología , Traumatismos en Atletas/cirugía , Estudios Transversales , Femenino , Humanos , Rodilla/fisiopatología , Articulación de la Rodilla/fisiología , Masculino , Debilidad Muscular/fisiopatología , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiología , Calidad de Vida , Autoinforme , Torque , Ultrasonografía , Adulto Joven
16.
Med Sci Sports Exerc ; 51(5): 951-961, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30629047

RESUMEN

PURPOSE: Obesity influences gait and muscle function, which may contribute to knee osteoarthritis. This study aimed 1) to compare gait biomechanics and quadriceps function between individuals with and without obesity and 2) to examine the association between quadriceps function and gait biomechanics. METHODS: Forty-eight individuals with and 48 without obesity participated and were matched on age and sex. Gait biomechanics at standardized and self-selected speeds were used to assess peak vertical ground reaction force (vGRF), vertical loading rate (vLR), internal knee extension moment (KEM), peak knee flexion angle (KFA), knee flexion excursion (KFE), and knee joint stiffness. Quadriceps function was assessed using peak isometric strength (peak torque), early (RTD100) and late (RTD200) rate of torque development (RTD), and vastus lateralis cross-sectional area (CSA) and echo intensity (EI). RESULTS: When normalized to fat-free mass, individuals with obesity had lower RTD100 (P = 0.04) and RTD200 (P = 0.02) but higher vastus lateralis CSA (P < 0.01) and EI (P < 0.01) compared with normal weight controls. The group-speed interaction was significant for normalized vGRF (P < 0.01), normalized vLR (P = 0.02), normalized KEM (P = 0.03), and normalized knee joint stiffness (P = 0.02). Post hoc analyses indicate a smaller normalized vGRF and normalized KEM, and lower knee joint stiffness in individuals with obesity compared with normal weight controls at self-selected speed. There were main effects of speed for all kinematic and kinetic variables, and body mass index group for all absolute kinetic variables as well as normalized vGRF (all P < 0.001). A lower vastus lateralis EI (P = 0.04) and greater RTD100 (P < 0.01) were associated with a larger KEM in individuals with obesity. CONCLUSION: Individuals with obesity have quadriceps dysfunction that is weakly associated with KEM during walking. Exercise interventions that improve quadriceps function may improve walking mechanics.


Asunto(s)
Marcha , Obesidad/fisiopatología , Músculo Cuádriceps/fisiopatología , Adulto , Fenómenos Biomecánicos , Composición Corporal , Estudios de Casos y Controles , Femenino , Humanos , Articulación de la Rodilla/fisiopatología , Masculino , Rango del Movimiento Articular , Torque , Adulto Joven
17.
Gait Posture ; 65: 221-227, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30558935

RESUMEN

BACKGROUND: Individuals with anterior cruciate ligament reconstruction (ACLR) are at greater risk for knee osteoarthritis, which may be in part due to altered gait biomechanics. Articular cartilage thickness is typically imaged using magnetic resonance imaging, which is costly and lacks portability. Ultrasonography may provide an alternative imaging method for articular cartilage. It is unclear if ultrasonographic measurements of cartilage thickness are associated with gait biomechanics in individuals with ACLR. RESEARCH QUESTION: To evaluate the association between sagittal and frontal plane knee mechanics during gait and resting femoral cartilage thickness from ultrasonography. METHODS: Twenty-five females with ACLR (age = 21.7 ± 2.6 years, time since ACLR = 60.6 ± 24.8 months) completed assessments of walking biomechanics and resting femoral cartilage thickness. Linear regression examined the association between gait biomechanics and cartilage thickness at the medial (MC) and lateral (LC) femoral condyles, and intercondylar notch (IC) after accounting for time since ACLR, meniscal injury, and gait speed. RESULTS: In the ACLR limb, larger vertical ground reaction force (ΔR2 = 0.21, pΔ = 0.03), knee flexion angle (ΔR2 = 0.15, pΔ = 0.05), knee flexion excursion (KFE) (ΔR2 = 0.16, pΔ = 0.04), and knee flexion impulse (KFI) (ΔR2 = 0.23, pΔ = 0.02) were associated with thicker MC cartilage. A larger knee adduction angle (ΔR2 = 0.20, pΔ = 0.03) and knee adduction moment (KAM) (ΔR2 = 0.20, pΔ = 0.03) were associated with thinner MC thickness. Larger KFE (ΔR2 = 0.20, pΔ = 0.03) was associated with thicker LC cartilage. Gait biomechanics were not associated with IC cartilage thickness. After accounting for co-variates, the combination of KFI and KAM was predictive of MC thickness (ΔR2 = 0.37, pΔ = 0.01; Total R2 = 0.52, p = 0.02). Meniscal injury, KAM, and KFI were significant predictors in the model. In the contralateral limb, KFE was associated with thicker MC cartilage (ΔR2 = 0.16, pΔ = 0.05). SIGNIFICANCE: Sagittal and frontal plane knee mechanics during gait are uniquely associated with ultrasonographic measurements of femoral cartilage thickness in individuals with ACLR. Furthermore, concomitant medial meniscal injury was associated with thinner MC cartilage.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Cartílago Articular/diagnóstico por imagen , Marcha/fisiología , Articulación de la Rodilla/fisiopatología , Ultrasonografía/métodos , Lesiones del Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Estudios Transversales , Femenino , Fémur/cirugía , Análisis de la Marcha/métodos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/etiología , Rango del Movimiento Articular/fisiología , Caminata/fisiología , Velocidad al Caminar/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA