Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glia ; 68(5): 947-962, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31743496

RESUMEN

Bmal1 is an essential component of the molecular clockwork, which drives circadian rhythms in cell function. In Bmal1-deficient (Bmal1-/-) mice, chronodisruption is associated with cognitive deficits and progressive brain pathology including astrocytosis indicated by increased expression of glial fibrillary acidic protein (GFAP). However, relatively little is known about the impact of Bmal1-deficiency on astrocyte morphology prior to astrocytosis. Therefore, in this study we analysed astrocyte morphology in young (6-8 weeks old) adult Bmal1-/- mice. At this age, overall GFAP immunoreactivity was not increased in Bmal1-deficient mice. At the ultrastructural level, we found a decrease in the volume fraction of the fine astrocytic processes that cover the hippocampal mossy fiber synapse, suggesting an impairment of perisynaptic processes and their contribution to neurotransmission. For further analyses of actin cytoskeleton, which is essential for distal process formation, we used cultured Bmal1-/- astrocytes. Bmal1-/- astrocytes showed an impaired formation of actin stress fibers. Moreover, Bmal1-/- astrocytes showed reduced levels of the actin-binding protein cortactin (CTTN). Cttn promoter region contains an E-Box like element and chromatin immunoprecipitation revealed that Cttn is a potential Bmal1 target gene. In addition, the level of GTP-bound (active) Rho-GTPase (Rho-GTP) was reduced in Bmal1-/- astrocytes. In summary, our data demonstrate that Bmal1-deficiency affects morphology of the fine astrocyte processes prior to strong upregulation of GFAP, presumably because of impaired Cttn expression and reduced Rho-GTP activation. These morphological changes might result in altered synaptic function and, thereby, relate to cognitive deficits in chronodisruption.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Citoesqueleto de Actina/metabolismo , Astrocitos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Cortactina/genética , Cortactina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Noqueados , Transmisión Sináptica/fisiología
2.
Front Bioeng Biotechnol ; 12: 1431374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411056

RESUMEN

Synthetic biology is an interdisciplinary field that brings together engineering and biology concepts alongside the arts and social sciences to develop solutions to pressing problems in our world. The education of students entering this field has relied on a diverse set of pedagogical methods to accomplish this goal. One non-profit group, iGEM-the International Genetically Engineered Machine competition, has been a driver of students' awareness of synthetic biology for the last 20 years giving many young researchers their first experience in the field of synthetic biology. Dissemination of synthetic biology concepts by iGEM has occurred through several programs including a webinar series started during the 2020 COVID pandemic. The iGEM webinar series successfully engaged students by taking inspiration from synthetic biology programs in Europe, North America, and Asia that had themselves evolved alongside iGEM. The webinar designers modeled the content after their experiences in iGEM as well as their academic courses, pedagogy, and mentoring experiences. This series has produced globally accessible pedagogy for both technical synthetic biology knowledge and the communication skills necessary to build and communicate synthetic biology projects. The hope is that this series functions as a lasting blueprint that can be used by future educators in synthetic biology and other disciplines to reduce barriers that students face when attempting to enter cutting edge fields.

3.
Synth Biol (Oxf) ; 8(1): ysad006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073284

RESUMEN

Synthetic biologists have made great progress over the past decade in developing methods for modular assembly of genetic sequences and in engineering biological systems with a wide variety of functions in various contexts and organisms. However, current paradigms in the field entangle sequence and functionality in a manner that makes abstraction difficult, reduces engineering flexibility and impairs predictability and design reuse. Functional Synthetic Biology aims to overcome these impediments by focusing the design of biological systems on function, rather than on sequence. This reorientation will decouple the engineering of biological devices from the specifics of how those devices are put to use, requiring both conceptual and organizational change, as well as supporting software tooling. Realizing this vision of Functional Synthetic Biology will allow more flexibility in how devices are used, more opportunity for reuse of devices and data, improvements in predictability and reductions in technical risk and cost.

4.
Front Bioeng Biotechnol ; 10: 1110376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714630

RESUMEN

A biofoundry is a highly automated facility for processing of biological samples. In that capacity it has a major role in accelerating innovation and product development in engineering biology by implementing design, build, test and learn (DBTL) cycles. Biofoundries bring public and private stakeholders together to share resources, develop standards and forge collaborations on national and international levels. In this paper we argue for expanding the scope of applications for biofoundries towards roles in biosurveillance and biosecurity. Reviewing literature on these topics, we conclude that this could be achieved in multiple ways including developing measurement standards and protocols, engaging citizens in data collection, closer collaborations with biorefineries, and processing of samples. Here we provide an overview of these roles that despite their potential utility have not yet been commonly considered by policymakers and funding agencies and identify roadblocks to their realization. This document should prove useful to policymakers and other stakeholders who wish to strengthen biosecurity programs in ways that synergize with bioeconomy.

5.
Cell Rep Methods ; 2(12): 100366, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36590691

RESUMEN

Chromosome structure and function is studied using various cell-based methods as well as with a range of in vitro single-molecule techniques on short DNA substrates. Here, we present a method to obtain megabase-pair-length deproteinated DNA for in vitro studies. We isolated chromosomes from bacterial cells and enzymatically digested the native proteins. Mass spectrometry indicated that 97%-100% of DNA-binding proteins are removed from the sample. Fluorescence microscopy analysis showed an increase in the radius of gyration of the DNA polymers, while the DNA length remained megabase-pair sized. In proof-of-concept experiments using these deproteinated long DNA molecules, we observed DNA compaction upon adding the DNA-binding protein Fis or PEG crowding agents and showed that it is possible to track the motion of a fluorescently labeled DNA locus. These results indicate the practical feasibility of a "genome-in-a-box" approach to study chromosome organization from the bottom up.


Asunto(s)
Cromosomas , ADN , ADN/genética , Cromosomas/metabolismo , Genoma , Proteínas de Unión al ADN/genética , Microscopía Fluorescente
6.
Cell Rep ; 38(10): 110484, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263595

RESUMEN

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.


Asunto(s)
Astrocitos , Conexina 43 , Animales , Astrocitos/metabolismo , Conexina 30/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Aprendizaje Espacial
7.
J Immunol ; 183(5): 3309-16, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19641138

RESUMEN

The liver plays a major role in clearing bacteria from the bloodstream. Rapid clearance is primarily the function of fixed tissue macrophages (Kupffer cells) that line the hepatic sinusoids. Although Kupffer cells play a critical role in blood clearance, the actual elimination of the bulk of bacteria taken up by the liver depends upon the accumulation of bactericidal neutrophils. Subsequent experiments demonstrating neutrophils inside Kupffer cells derived from infected animals prompted our speculation that neutrophils modulate the proinflammatory response of Kupffer cells to bacteria cleared from the bloodstream. Indeed, we report here that neutrophils accumulated in the liver sinusoids suppress cytokine and chemokine mRNA expression and protein production by Kupffer cells. Using listeriosis in mice as an experimental model, we found that IL-1beta, IL-6, IL-10, IL-12, TNF-alpha, MIP-1alpha, keratinocyte-derived chemokine, and MCP-1 mRNA levels were >or=10-fold more in the livers of Listeria-infected, relative to noninfected control, mice at 0.5-2 h after i.v. infection. Most message levels were sharply diminished thereafter, correlating inversely with increased neutrophil sequestration. Relative to intact animals, mice rendered neutrophil deficient exhibited marked increases in cytokine/chemokine mRNA expression and protein production in the liver subsequent to infection. Moreover, purified Kupffer cells derived from infected, neutrophil-depleted mice produced significantly more IL-6, IL-10, IL-12, TNF-alpha, keratinocyte-derived chemokine, and MCP-1 in culture. These findings document the critical role of neutrophils in moderating the proinflammatory response of Kupffer cells to bacteria taken up by the liver.


Asunto(s)
Movimiento Celular/inmunología , Macrófagos del Hígado/inmunología , Listeriosis/inmunología , Listeriosis/patología , Hígado/inmunología , Hígado/microbiología , Neutrófilos/inmunología , Neutrófilos/microbiología , Animales , Apoptosis/inmunología , Células Cultivadas , Quimiocinas/antagonistas & inhibidores , Quimiocinas/biosíntesis , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Regulación hacia Abajo/inmunología , Femenino , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Macrófagos del Hígado/microbiología , Macrófagos del Hígado/patología , Listeria monocytogenes/inmunología , Listeriosis/microbiología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/patología , ARN Mensajero/biosíntesis
8.
Gastroenterology ; 136(3): 1048-59, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19056387

RESUMEN

BACKGROUND & AIMS: NK1.1(+) TCRalphabeta(int) CD1-restricted T (NKT) cells are a unique subset of T lymphocytes that are believed to have an immunoregulatory role in a wide range of diseases. Most mouse NKT cells express a T-cell receptor that contains an invariant Valpha14Jalpha18 chain and recognizes antigenic glycolipids presented in association with major histocompatibility complex class Ib (CD1d) molecules. These invariant NKT (iNKT) cells have been implicated in cholestatic liver injury. METHODS: We examined the role of iNKT cells in liver injury associated with biliary obstruction in mice with ligations of the common bile duct. RESULTS: The number of activated iNKT cells increased markedly in the livers of mice following bile duct ligation. Plasma alanine aminotransferase levels, an indicator of liver injury, were significantly higher in iNKT cell-deficient (Jalpha18(-/-)) mice compared with wild-type mice following bile duct ligation. Photo image analysis of histologic sections confirmed that more damage was present in the livers of Jalpha18(-/-) mice; liver damage correlated with increases in keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2 (MIP-2) production as well as neutrophil sequestration. Liver injury was significantly reduced in Jalpha18(-/-) mice treated with anti-KC and anti-MIP-2 or rendered neutrophil deficient before bile duct ligation. Similarly, Jalpha18(-/-) mice that were injected with iNKT cells before bile duct ligation exhibited significant decreases in neutrophil accumulation and liver damage. CONCLUSIONS: These data document the role of iNKT cells in suppressing the neutrophil proinflammatory response and neutrophil-dependent cholestatic liver damage.


Asunto(s)
Colestasis Extrahepática/inmunología , Colestasis Extrahepática/terapia , Tolerancia Inmunológica/inmunología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/trasplante , Neutrófilos/inmunología , Traslado Adoptivo , Animales , Quimiocinas/metabolismo , Colestasis Extrahepática/patología , Conducto Colédoco , Modelos Animales de Enfermedad , Femenino , Hepatitis/inmunología , Hepatitis/patología , Hepatitis/terapia , Ligadura , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Organismos Libres de Patógenos Específicos
9.
Biofabrication ; 13(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33086207

RESUMEN

3D bioprinting has seen a tremendous growth in recent years in a variety of fields such as tissue engineering, drug testing and regenerative medicine, which has led researchers and manufacturers to continuously advance and develop novel bioprinting techniques and materials. Although new bioprinting methods are emerging (e.g. contactless and volumetric bioprinting), micro-extrusion bioprinting remains the most widely used method. Micro-extrusion bioprinting, however, is still largely dependent on the conventional pneumatic extrusion process, which relies heavily on homogenous biomaterial inks and bioinks to maintain a constant material flow rate. Augmenting the functionality of the bioink with the addition of nanoparticles, cells or biopolymers can induce inhomogeneities resulting in uneven material flow during printing and/or clogging of the nozzle, leading to defects in the printed construct. In this work, we evaluated a novel extrusion technique based on a miniaturized progressive cavity pump (PCP) which allows precise control over the volumetric flow rate by positive displacement. We compared the accuracy and precision of this system to the pneumatic extrusion system and tested both systems for their effect on cell viability after extrusion. The PCP achieved a significantly higher accuracy and precision compared to the pneumatic system, while maintaining good viability. These improvements were independent of the bioink composition, printing speed or nozzle size. This study demonstrates the merit of precise extrusion-process control in bioprinting by PCPs and investigates their influence on process-induced cell damage. PCPs are a promising tool for bioprinting and could help provide standardized and validated bioprinted constructs while leaving the researcher more freedom in the design of the bioinks.


Asunto(s)
Bioimpresión , Tinta , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
10.
ACS Nano ; 14(6): 7358-7369, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32426962

RESUMEN

Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 µs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.


Asunto(s)
Nanopartículas , Termometría , Conductividad Eléctrica , Iones , Rayos Láser
12.
Appl Environ Microbiol ; 71(6): 2848-52, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15932976

RESUMEN

A two-phase cultivation system was developed which will enable studies of streptomycete differentiation by molecular biological and global techniques such as transcriptomics and proteomics. The system is based on a solid phase formed by glass beads corresponding to particles in soil, clay, or sand natural habitats of streptomycetes. The beads are immersed in a liquid medium that allows easy modification or replacement of nutrients and growth factors as well as radioactive labeling of proteins. Scanning electron microscopy was used to analyze morphological differentiation of streptomycetes on glass beads and two-dimensional protein electrophoresis to demonstrate the potential of the system for analyses of protein synthesis profiles during the developmental program. This system facilitates studies of differentiation including expression and post-translation modifications of streptomycetes proteins, secondary metabolite biosynthesis, and morphological development.


Asunto(s)
Vidrio , Streptomyces/crecimiento & desarrollo , Streptomyces/ultraestructura , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas , Medios de Cultivo , Electroforesis en Gel Bidimensional , Regulación Bacteriana de la Expresión Génica , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Proteómica , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA