Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 14(13): 5984-93, 2006 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19516769

RESUMEN

We report on a displacement metrology setup that provides sub-pm resolution in air. The setup is based on a Fabry-Perot cavity. However, unlike current Fabry-Perot cavity based displacement setups we incorporate a novel fs-laser based arbitrary wavelength synthesizer that provides efficient suppression of atmospheric disturbances while providing very wide and precise tuning of the output wavelength. The wavelength synthesizer provides sub-10 attometer wavelength resolution. The setup provides subpm length stability for integration times of up to one minute and sub-10 pm for up to half an hour without airtight enclosure of the Fabry-Perot cavities.

2.
Opt Lett ; 34(5): 692-4, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19252595

RESUMEN

We demonstrate a precision frequency measurement using a phase-stabilized 120 km optical fiber link over a physical distance of 50 km. The transition frequency of the (87)Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time. The results demonstrate the excellent functions of the intercity optical fiber link and the great potential of optical lattice clocks for use in the redefinition of the second.

3.
Phys Rev Lett ; 100(14): 140801, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18518019

RESUMEN

The 1S0-3P0 clock transition frequency nuSr in neutral 87Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1 x 10(-15) level makes nuSr the best agreed-upon optical atomic frequency. We combine periodic variations in the 87Sr clock frequency with 199Hg+ and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant alpha, electron-proton mass ratio mu, and light quark mass. Furthermore, after 199Hg+, 171Yb+, and H, we add 87Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of alpha and mu.

4.
Opt Lett ; 29(21): 2467-9, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15584263

RESUMEN

The repetition rate and carrier-envelope phase offset frequencies of a turnkey, all-fiber-based continuum generator were phase locked to a hydrogen maser. The frequency of the hydrogen maser was calibrated with a highly stable cesium atomic clock, and therefore a fully phase-locked optical frequency comb with well-defined absolute frequencies was obtained. In contrast with the commonly used Ti:sapphire-laser-based systems, we have accomplished a fully turnkey system with no user-adjustable parts. To evaluate the performance of this novel system, we performed absolute frequency measurements in the telecommunications region and at 1064 nm and compared them with our traditional Ti:sapphire-based comb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA