Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lab Invest ; 104(2): 100307, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104865

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Asunto(s)
Mitocondrias , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Mitocondrias/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Envejecimiento , Mitofagia
2.
J Cell Physiol ; 237(7): 3030-3043, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35478455

RESUMEN

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. First, our data showed that L-OPA1 expression was downregulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice.


Asunto(s)
Lesión Pulmonar Aguda , Células Epiteliales Alveolares , GTP Fosfohidrolasas/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , GTP Fosfohidrolasas/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Mitocondrias/metabolismo , Necroptosis
3.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897843

RESUMEN

We previously found that the disorder of soluble epoxide hydrolase (sEH)/cyclooxygenase-2 (COX-2)-mediated arachidonic acid (ARA) metabolism contributes to the pathogenesis of the non-alcoholic fatty liver disease (NAFLD) in mice. However, the exact mechanism has not been elucidated. Accumulating evidence points to the essential role of cellular senescence in NAFLD. Herein, we investigated whether restoring the balance of sEH/COX-2-mediated ARA metabolism attenuated NAFLD via hepatocyte senescence. A promised dual inhibitor of sEH and COX-2, PTUPB, was used in our study to restore the balance of sEH/COX-2-mediated ARA metabolism. In vivo, NAFLD was induced by a high-fat diet (HFD) using C57BL/6J mice. In vitro, mouse hepatocytes (AML12) and mouse hepatic astrocytes (JS1) were used to investigate the effects of PTUPB on palmitic acid (PA)-induced hepatocyte senescence and its mechanism. PTUPB alleviated liver injury, decreased collagen and lipid accumulation, restored glucose tolerance, and reduced hepatic triglyceride levels in HFD-induced NAFLD mice. Importantly, PTUPB significantly reduced the expression of liver senescence-related molecules p16, p53, and p21 in HFD mice. In vitro, the protein levels of γH2AX, p53, p21, COX-2, and sEH were increased in AML12 hepatocytes treated with PA, while Ki67 and PCNA were significantly decreased. PTUPB decreased the lipid content, the number of ß-gal positive cells, and the expression of p53, p21, and γH2AX proteins in AML12 cells. Meanwhile, PTUPB reduced the activation of hepatic astrocytes JS1 by slowing the senescence of AML12 cells in a co-culture system. It was further observed that PTUPB enhanced the ratio of autophagy-related protein LC3II/I in AML12 cells, up-regulated the expression of Fundc1 protein, reduced p62 protein, and suppressed hepatocyte senescence. In addition, PTUPB enhanced hepatocyte autophagy by inhibiting the PI3K/AKT/mTOR pathway through Sirt1, contributing to the suppression of senescence. PTUPB inhibits the PI3K/AKT/mTOR pathway through Sirt1, improves autophagy, slows down the senescence of hepatocytes, and alleviates NAFLD.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico , Animales , Autofagia , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Dieta Alta en Grasa , Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Palmítico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Biomed Pharmacother ; 169: 115937, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38007934

RESUMEN

Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored. In the present study, we observed that bleomycin (BLM) induced enhanced mitophagy accompanied by increased mitochondrial ROS (mito-ROS) content in the murine alveolar epithelial cell line MLE12. While EETs reduced BLM-induced mitophagy and mito-ROS content in MLE12 cells, and the mechanism was related to the regulation of NOX4/Nrf2-mediated redox imbalance. Furthermore, we found that inhibition of EETs degradation could significantly inhibit mitophagy and regulate NOX4/Nrf2 balance to exert anti-oxidant effects in D-galactose-induced premature aging mice. Collectively, these findings may provide new ideas for treating age-related pulmonary diseases by targeting EETs to improve mitochondrial dysfunction and reduce oxidative stress.


Asunto(s)
Células Epiteliales Alveolares , Enfermedades Pulmonares , Ratones , Animales , Células Epiteliales Alveolares/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Senescencia Celular
5.
Heliyon ; 9(6): e17361, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37416635

RESUMEN

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of pulmonary fibrosis (PF). However, the exact mechanism underlying AEC senescence during PF remains poorly understood. Here, we reported an unrecognized mechanism for AEC senescence during PF. We found that, in bleomycin (BLM)-induced PF mice, the expressions of isocitrate dehydrogenase 3α (Idh3α) and citrate carrier (CIC) were significantly down-regulated in the lungs, which could result in mitochondria citrate (citratemt) accumulation in our previous study. Notably, the down-regulation of Idh3α and CIC was related to senescence. The mice with AECs-specific Idh3α and CIC deficiency by adenoviral vector exhibited spontaneous PF and senescence in the lungs. In vitro, co-inhibition of Idh3α and CIC with shRNA or inhibitors triggered the senescence of AECs, indicating that accumulated citratemt triggers AEC senescence. Mechanistically, citratemt accumulation impaired the mitochondrial biogenesis of AECs. In addition, the senescence-associated secretory phenotype from senescent AECs induced by citratemt accumulation activated the proliferation and transdifferentiation of NIH3T3 fibroblasts into myofibroblasts. In conclusion, we show that citratemt accumulation would be a novel target for protection against PF that involves senescence.

6.
Redox Biol ; 63: 102765, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269686

RESUMEN

Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence. In vitro, we found that 14,15-EET content was significantly decreased in senescent AECs. Exogenous EETs supplementation, overexpression of CYP2J2, or inhibition of EETs degrading enzyme soluble epoxide hydrolase (sEH) to increase EETs alleviated AECs' senescence. Mechanistically, 14,15-EET promoted the expression of Trim25 to ubiquitinate and degrade Keap1 and promoted Nrf2 to enter the nucleus to exert an anti-oxidant effect, thereby inhibiting endoplasmic reticulum stress (ERS) and alleviating AEC senescence. Furthermore, in D-galactose (D-gal)-induced premature aging mouse model, inhibiting the degradation of EETs by Trifluoromethoxyphenyl propionylpiperidin urea (TPPU, an inhibitor of sEH) significantly inhibited the protein expression of p16, p21, and γH2AX. Meanwhile, TPPU reduced the degree of age-related pulmonary fibrosis in mice. Our study has confirmed that EETs are novel anti-senescence substances for AECs, providing new targets for the treatment of chronic lung diseases.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular , Eicosanoides , Estrés del Retículo Endoplásmico , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/fisiología , Eicosanoides/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Fibrosis Pulmonar , Senescencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA