Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Immunol ; 19(12): 1379-1390, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420628

RESUMEN

The T cell antigen receptor (TCR) expressed on thymocytes interacts with self-peptide major histocompatibility complex (pMHC) ligands to signal apoptosis or survival. Here, we found that negative-selection ligands induced thymocytes to exert forces on the TCR and the co-receptor CD8 and formed cooperative TCR-pMHC-CD8 trimolecular 'catch bonds', whereas positive-selection ligands induced less sustained thymocyte forces on TCR and CD8 and formed shorter-lived, independent TCR-pMHC and pMHC-CD8 bimolecular 'slip bonds'. Catch bonds were not intrinsic to either the TCR-pMHC or the pMHC-CD8 arm of the trans (cross-junctional) heterodimer but resulted from coupling of the extracellular pMHC-CD8 interaction to the intracellular interaction of CD8 with TCR-CD3 via associated kinases to form a cis (lateral) heterodimer capable of inside-out signaling. We suggest that the coupled trans-cis heterodimeric interactions form a mechanotransduction loop that reinforces negative-selection signaling that is distinct from positive-selection signaling in the thymus.


Asunto(s)
Mecanotransducción Celular/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Timocitos/inmunología , Timo/inmunología , Animales , Supresión Clonal/inmunología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo , Timocitos/metabolismo
2.
Arch Virol ; 167(4): 1089-1098, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35258649

RESUMEN

Perilla is an annual herb with a unique aroma and taste that has been cultivated in Korea for hundreds of years. It has been widely cultivated in many Asian and European countries as a food and medicinal crop. Recently, several viruses have been reported to cause diseases in perilla in Korea, including turnip mosaic virus (TuMV), which is known as a brassica pathogen due to its significant damage to brassica crops. In this study, we determined the complete genome sequences of two new TuMV isolates originating from perilla in Korea. Full-length infectious cDNA clones of these two isolates were constructed, and their infectivity was tested by agroinfiltration of Nicotiana benthamiana and sap inoculation of Chinese cabbage and radish plants. In addition, we analyzed the phylogenetic relationship of six new Korean TuMV isolates to members of the four major groups. We also used RDP4 software to conduct recombination analysis of recent isolates from Korea, which provided new insight into the evolutionary relationships of Korean isolates of TuMV.


Asunto(s)
Perilla frutescens , Células Clonales , Filogenia , Enfermedades de las Plantas , Potyvirus
3.
Plant Dis ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666217

RESUMEN

Tulip virus X (tulip virus X, TVX) is a member of the genus Potexvirus (family Alphaflexiviridae) and is a positive single-stranded RNA virus. TVX was described first in Scotland (Mowat 1982), followed by several countries (Yamaji et al. 2001; Tzanetakis et al. 2005; Ward et al. 2008; Dees et al. 2011; Sochacki and Komorowska 2012; Wylie et al. 2019). In April 2021, 86 whole tulip plants showing viral symptoms in leaves (mosaic, yellowing, and malformation) and flowers (color breaking) were collected in Chilgok, Chuncheon, Goseong, Yecheon and Yesan, Korea. Furthermore, high-throughput sequencing was performed to identify viruses that infect tulips in Korea. Total RNA was extracted from pooled the leaves and petals using a Maxwell® 16 LEV Plant RNA Kit (Promega, Madison, USA). We constructed a single library using the TruSeq Stranded Total RNA LT Sample Prep Kit for Plant (Illumina, San Diego, USA). The library was 100 bp paired-end sequenced using Illumina's NovaSeq 6000 (Macrogen, Seoul, Korea) and was assembled de novo using Trinity software version trinityrnaseq_r20140717, with default parameters. The contigs were annotated as in previous study (Lee et al. 2020), revealing a single contig each related to TVX, lily symptomless virus (LSV), and tulip breaking virus (TBV) was generated from 648 million total reads. The TVX-related contig (GenBank ON205948) consisting of 6,076 bp showed 99.52% nucleotide identity (6027/6056 bp) with TVX-J (GenBank AB066288). We conducted an RT-PCR assay to validate the presence of viruses with specific primers as TVX-F5093/R5624 (5'-CTATCCGGACTCATTCTACTTC/GTGCGTTCCAGATAAGCTTG-3'), LSV-F7013/R7338 (5'-CTTGGTCGACAGGGACATAAC/GATTGGAATTGTGCTTTTCAGC-3'), and TBV-F7515/R8116 (5'-GTGTGTCATGGATGATTGTTG/CAACTGATTTGCTACCGCTAG-3'). Consequently, TVX were detected in 13 of 86 samples. Moreover, LSV and TBV were detected in 15 and 26 samples, respectively. However, the yellowing and mosaic observed in the TVX infected samples were not observed in the LSV and TBV infected samples. Subsequently, two TVX amplicons were selected, cloned and sequenced. The obtained sequences were 532 bp and were named YS24 and YS38 (GenBank LC664027 and LC664028), respectively. The Korean isolates showed 98.68% (525/532 bp) and 99.62% (530/532 bp) identity with Australian isolate (GenBank MH886522) in BLASTn analysis. To bioassay for TVX, the infected tulip leaf tissue from which YS24 was obtained was used to sap-inoculate, in triplicates, 15 species of indicator plants (Nicotiana benthamiana, N. clevelandii, N. debneyi, N. glutinosa, N. rustica, N. tabacum, Datura stramonium, Glycine max, Phaseolus vulgaris, Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Cu. melo, Gomphrena globosa, and Tetragonia tetragonioides). After 14 days of inoculation, we observed distinct chlorotic spots on inoculated and upper leaves of C. quinoa, but no symptoms were observed in other indicator plants. In RT-PCR assay using TVX-specific primers, only C. quinoa showed a positive reaction. In previous studies, C. amaranticolor, C. quinoa, G. globosa, and N. benthamiana were known as the experimental host of TVX (Dees et al. 2011; Tzanetakis et al. 2005), but only C. quinoa was confirmed to be susceptible to the Korean isolate. Furthermore, transmission electron microscopy revealed typical flexuous rod-shaped viral particles in the inoculated C. quinoa. To our knowledge, this is the first report of TVX infecting tulips in Korea.

4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613461

RESUMEN

Soybean mosaic virus (SMV) of the genus Potyvirus is an important virus in cultivated soybeans. Here, we obtained 7 SMV genomes from soybean germplasms using RNA sequencing and conducted a comprehensive evolutionary and phylogenetic study of 143 SMV genomes derived from 10 plant species and 12 countries. The phylogenetic tree we constructed using coding DNA sequences revealed the existence of nine clades of SMV isolates/strains. Recombination analysis revealed 76 recombinant events and 141 recombinants in total. Clades 1 and 3 contain the most common SMV pathotypes, including G1 through G7, which are distributed worldwide. Clade 2 includes several Chinese SMV pathotypes. The SMV isolates were further divided into two groups. The SMV isolates in the first group, including clades 8 and 9, were identified from Pinellia and Atractylodes species, whereas those in the second group (clades 1 through 7) were mostly found in cultivated soybeans. The SMV polyprotein undergoes positive selection, whereas most mature proteins, except for the P1 protein, undergo negative selection. The P1 protein of SMV isolates in group 1 may be highly correlated with host adaptation. This study provides strong evidence that recombination and plant hosts are powerful forces driving the genetic diversity of the SMV genome.


Asunto(s)
Potyvirus , Proteínas Virales , Filogenia , Proteínas Virales/metabolismo , Secuencia de Bases , Potyvirus/genética , Glycine max/metabolismo , Enfermedades de las Plantas
5.
Arch Virol ; 162(12): 3893-3897, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28905257

RESUMEN

Two novel viruses, isolated in Bonghwa, Republic of Korea, from an Ixeridium dentatum plant with yellowing mottle symptoms, have been provisionally named Ixeridium yellow mottle-associated virus 1 (IxYMaV-1) and Ixeridium yellow mottle-associated virus 2 (IxYMaV-2). IxYMaV-1 has a genome of 6,017 nucleotides sharing a 56.4% sequence identity with that of cucurbit aphid-borne yellows virus (genus Polerovirus). The IxYMaV-2 genome of 4,196 nucleotides has a sequence identity of less than 48.3% with e other species classified within the genus Umbravirus. Genome properties and phylogenetic analysis suggested that IxYMaV-1 and -2 are representative isolates of new species classifiable within the genus Polerovirus and Umbravirus, respectively.


Asunto(s)
Asteraceae/virología , Genoma Viral , Luteoviridae/clasificación , Luteoviridae/aislamiento & purificación , Tombusviridae/clasificación , Tombusviridae/aislamiento & purificación , Luteoviridae/genética , Filogenia , Enfermedades de las Plantas/virología , República de Corea , Análisis de Secuencia de ADN , Homología de Secuencia , Tombusviridae/genética
6.
J Immunol ; 195(8): 3557-64, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26336148

RESUMEN

We have recently shown that two-dimensional (2D) and force-regulated kinetics of TCR-peptide-bound MHC class I (pMHC-I) interactions predict responses of CD8(+) T cells. To test whether these findings are applicable to CD4(+) T cells, we analyzed the in situ 3.L2 TCR-pMHC-II interactions for a well-characterized panel of altered peptide ligands on the T cell surface using the adhesion frequency assay with a micropipette and the thermal fluctuation and force-clamp assays with a biomembrane force probe. We found that the 2D effective TCR-pMHC-II affinity and off-rate correlate with, but better predict the T cell response than, the corresponding measurements with the surface plasmon resonance in three dimensions. The 2D affinity of the CD4 for MHC-II was very low, approaching the detection limit, making it one to two orders of magnitude lower than the affinity of CD8 for MHC-I. In addition, the signal-dependent cooperation between TCR and coreceptor for pMHC binding previously observed for CD8 was not observed for CD4. Interestingly, force elicited TCR-pMHC-II catch-slip bonds for agonists but slip-only bonds for antagonists, thereby amplifying the power of discrimination between altered peptide ligands. These results show that the force-regulated 2D binding kinetics of the 3.L2 TCR for pMHC-II determine functions of CD4(+) T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética
7.
J Immunol ; 193(1): 68-76, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24890718

RESUMEN

T cell activation by Ag is one of the key events in adaptive immunity. It is triggered by interactions of the TCR and coreceptor (CD8 or CD4) with antigenic peptides embedded in MHC (pMHC) molecules expressed on APCs. The mechanism of how signal is initiated remains unclear. In this article, we complement our two-dimensional kinetic analysis of TCR-pMHC-CD8 interaction with concurrent calcium imaging to examine how ligand engagement of TCR with and without the coengagement of CD8 initiates signaling. We found that accumulation of frequently applied forces on the TCR via agonist pMHC triggered calcium, which was further enhanced by CD8 cooperative binding. Prolonging the intermission between sequential force applications impaired calcium signals. Our data support a model where rapid accumulation of serial forces on TCR-pMHC-CD8 bonds triggers calcium in T cells.


Asunto(s)
Antígenos CD8/inmunología , Señalización del Calcio/inmunología , Antígenos H-2/inmunología , Oligopéptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD8/genética , Señalización del Calcio/genética , Antígenos H-2/genética , Ratones , Ratones Transgénicos , Oligopéptidos/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología
8.
Arch Virol ; 159(7): 1807-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24473709

RESUMEN

Three isolates of cucumber fruit mottle mosaic virus (CFMMV) were collected from melon, cucumber, and pumpkin plants in Korea. A full-length cDNA clone of CFMMV-Cm (melon isolate) was produced and evaluated for infectivity after T7 transcription in vitro (pT7CF-Cmflc). The complete CFMMV genome sequence of the infectious clone pT7CF-Cmflc was determined. The genome of CFMMV-Cm consisted of 6,571 nucleotides and shared high nucleotide sequence identity (98.8 %) with the Israel isolate of CFMMV. Based on the infectious clone pT7CF-Cmflc, a CaMV 35S-promoter driven cDNA clone (p35SCF-Cmflc) was subsequently constructed and sequenced. Mechanical inoculation with RNA transcripts of pT7CF-Cmflc and agro-inoculation with p35SCF-Cmflc resulted in systemic infection of cucumber and melon, producing symptoms similar to those produced by CFMMV-Cm. Progeny virus in infected plants was detected by RT-PCR, western blot assay, and transmission electron microscopy.


Asunto(s)
Cucurbitaceae/virología , ADN Complementario/aislamiento & purificación , Enfermedades de las Plantas/virología , Tobamovirus/genética , Tobamovirus/fisiología , Agrobacterium tumefaciens , Secuencia de Bases , Clonación Molecular , Cucumis sativus/virología , Cucurbita/virología , ADN Viral/aislamiento & purificación , Hojas de la Planta/virología
9.
Plants (Basel) ; 13(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611534

RESUMEN

Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding of the B. juncea and CMV interactions. B. juncea-infecting CMV (CMV-Co6) and non-infecting CMV (CMV-Rs1) were used. To identify the determinants of systemic infection in B. juncea, we first constructed infectious clones of CMV-Co6 and CMV-Rs1 and used them as pseudo-recombinants. RNA2 of CMV was identified as an important determinant in B. juncea because B. juncea were systemically infected with RNA2-containing pseudo-recombinants; CMV-Co6, R/6/R, and R/6/6 were systemically infected B. juncea. Subsequently, the amino acids of the 2a and 2b proteins were compared, and a chimeric clone was constructed. The chimeric virus R/6Rns/R6cp, containing the C-terminal region of the 2a protein of CMV-Rs1, still infects B. juncea. It is the 2a protein that determines the systemic CMV infection in B. juncea, suggesting that conserved 160G and 214A may play a role in systemic CMV infection in B. juncea.

10.
Plant Pathol J ; 40(4): 390-398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39117337

RESUMEN

The Chinese artichoke (Stachys affinis syn. S. sieboldii) is a widely cultivated crop, and its rhizome is used as a medicinal vegetable. To investigate the causes of viral diseases in Chinese artichokes, the infection rates of four virus species infecting Chinese artichoke were investigated. Since the Chinese artichoke propagates through its tuber, this study aimed to determine whether viral transmission to the progeny is possible through the tuber, by identifying the virus present in the tuber and investigating its accumulation. First, reverse transcription polymerase chain reaction analysis was performed to detect viruses using total RNA extracted from the flowers, leaves, and tubers of Chinese artichoke plants. Alfalfa mosaic virus (AMV) and Chinese artichoke mosaic virus (ChAMV) had high infectivity in Chinese artichoke and most plants were simultaneously infected with AMV and ChAMV. These viruses were present in all tissues, but their detection frequency and accumulation rates varied across different tissues of the Chinese artichoke. Also, we sequenced the coat protein (CP) genes of AMV and ChAMV to investigate genetic variations of virus between the leaf and tuber. It provides information on CP gene sequences and genetic diversity of isolates identified from new hosts of AMV and ChAMV. This study offers valuable insights into the distribution and spread of the ChAMV and AMV within Chinese artichoke plants, which have implications for the management and control of viral infections in crops.

11.
Viruses ; 15(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38005817

RESUMEN

This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection.


Asunto(s)
Infecciones por Citomegalovirus , Virus de Plantas , Solanum lycopersicum , Transcriptoma , Frutas , Filogenia , Viroma , Virus de Plantas/genética , Enfermedades de las Plantas
12.
Plants (Basel) ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765420

RESUMEN

Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations.

13.
Virus Genes ; 44(2): 345-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22143325

RESUMEN

Ribgrass mosaic virus (RMV) has severely decreased the production and lowered quality of Chinese cabbage co-infected with Turnip mosaic virus (63.4%) in Korea. The complete genome sequence of RMV isolated from Brassica rapa ssp. pekinensis was determined. The full genome consisted of 6,304 nucleotides and showed sequence identities of 91.5-94.2% with the corresponding genome of other RMV strains. Full-length cDNA of RMV-Br was amplified by RT-PCR with a 5'-end primer harboring a T7 promoter sequence and a 3'-end RMV specific primer. Subsequently, the full-length cDNA was cloned into plasmid vectors. Capped transcripts synthesized from the cDNA clone were highly infectious and caused characteristic symptoms in B. rapa ssp. pekinensis and several indicator plants, similar to wild type RMV. Since there has not been found RMV resistant Chinese cabbage yet and the virus has been prevalent already throughout the natural fields of Korea, the identification of full sequence and development of infectious clone would help developing breeding program for RMV resistant crops.


Asunto(s)
Brassica/virología , Genoma Viral , ARN Viral/genética , Análisis de Secuencia de ADN , Tobamovirus/genética , Tobamovirus/aislamiento & purificación , ADN Complementario/química , ADN Complementario/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/virología , República de Corea , Homología de Secuencia de Ácido Nucleico , Tobamovirus/patogenicidad
14.
Plants (Basel) ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501296

RESUMEN

Soybean mosaic virus (SMV) of the family Potyviridae is the most devastating virus that infects soybean plants. In this study, we obtained 83 SMV coat protein (CP) sequences from seven provinces in Korea using RT-PCR and Sanger sequencing. Phylogenetic and haplotype analyses revealed eight groups of 83 SMV isolates and a network of 50 SMV haplotypes in Korea. The phylogenetic tree using 305 SMV CP sequences available worldwide revealed 12 clades that were further divided into two groups according to the plant hosts. Recombination rarely occurred in the CP sequences, while negative selection was dominant in the SMV CP sequences. Genetic diversity analyses revealed that plant species had a greater impact on the genetic diversity of SMV CP sequences than geographical origin or location. SMV isolates identified from Pinellia species in China showed the highest genetic diversity. Phylodynamic analysis showed that the SMV isolates between the two Pinellia species diverged in the year 1248. Since the divergence of the first SMV isolate from Glycine max in 1486, major clades for SMV isolates infecting Glycine species seem to have diverged from 1791 to 1886. Taken together, we provide a comprehensive overview of the genetic diversity and divergence of SMV CP sequences.

15.
Plants (Basel) ; 11(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807721

RESUMEN

Soybean is one of the most important crops in Korea. To identify the viruses infecting soybean, we conducted RNA sequencing with samples displaying symptoms of viral disease. A contig displaying sequence similarity to the known Geminivirus was identified. A polymerase chain reaction (PCR) using two different pairs of back-to-back primers and rolling circle amplification (RCA) confirmed the complete genome of a novel virus named soybean geminivirus B (SGVB), consisting of a circular monopartite DNA genome measuring 2616 nucleotides (nt) in length. SGVB contains four open reading frames (ORFs) and three intergenic regions (IRs). IR1 includes a nonanucleotide origin of replication in the stem-loop structure. Phylogenetic and BLAST analyses demonstrated that SGVB could be a novel virus belonging to the genus Mastrevirus in the family Geminiviridae. We generated infectious clones for SGVB by adding a copy of the IR1 region of SGVB, comparing the V-ori in addition to the full-length genome of SGVB. Using the infectious clones, we observed chlorosis and leaf curling with a latent infection in the inoculated Nicotiana benthamiana plants, while none of the inoculated soybean plants showed any visible symptoms of disease. This study provides the complete genome sequence and infectious clones of a novel Mastrevirus referred to as SGVB from soybean in Korea.

16.
Nat Commun ; 13(1): 7055, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396644

RESUMEN

Antigen recognition by the T cell receptor (TCR) of CD4+ T cells can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Here we show, using two-dimensional (2D) mechanical-based assays, that the affinity of CD4-pMHC interaction is 3-4 logs lower than that of cognate TCR-pMHC interactions, and it is more susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-pre-bound pMHC at 3-6 logs higher affinity, forming TCR-pMHC-CD4 tri-molecular bonds that are prolonged by force (catch bond), and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 we show that 7-nm proximity optimizes TCR-pMHC-CD4 tri-molecular bond formation with pMHC. Our results thus provide deep mechanistic insight into CD4 enhancement of TCR antigen recognition.


Asunto(s)
Antígenos , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad , Péptidos/química
17.
Plant Pathol J ; 36(5): 503-508, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082735

RESUMEN

The potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcriptionpolymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.8 to 7.0 (log10 copies/ml). In addition, PMMoV was observed by transmission electron microscopy in all five samples. The samples exhibited viral pathogenicity to Nicotiana benthamiana plants, indicating that global trade of processed products could be a possible source of the transmission of plant viruses.

18.
Biotechnol Prog ; 35(5): e2831, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31050215

RESUMEN

An alternating tangential flow (ATF) perfusion-based transient gene expression (TGE) bioprocess has been developed using human embryonic kidney (HEK) 293 cells to produce H1-ss-np, a promising candidate for a universal influenza vaccine. Two major adjustments were taken to improve the process: (1) eliminate the interference of microbubbles during gene transfection; and (2) utilize an ATF perfusion system for a prolonged culture period. As a result, a closed-operation 9-days ATF perfusion-based TGE bioprocess was developed. The TGE bioprocess showed continuous cell growth with high cell viability and prolonged cellular productivity that achieved recombinant product level of ~270 mg/L which was more than two times that of 4-days base-line TGE bioprocess. In addition, the consumables cost per milligram for ATF perfusion-based TGE bioprocess was ~70% lower than that of the base-line TGE bioprocess suggesting high cost savings potential in vaccine manufacturing. Based on the lower contamination risk, higher productivity, and cost efficiency, the ATF perfusion-based TGE bioprocess can likely provide potential benefits to many future applications in vaccine and drug manufacturing.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Vacunas contra la Influenza , Recuento de Células , Supervivencia Celular/fisiología , Expresión Génica , Células HEK293 , Humanos , Vacunas contra la Influenza/química , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/metabolismo , Nanopartículas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Plant Biotechnol J ; 5(6): 778-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17764520

RESUMEN

Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.


Asunto(s)
Aciltransferasas/genética , Cucumovirus , Sistema Enzimático del Citocromo P-450/genética , Flavonoides/biosíntesis , Silenciador del Gen , Glycine max/genética , Oxigenasas de Función Mixta/genética , Aciltransferasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación hacia Abajo , Flavonoles/metabolismo , Ingeniería Genética , Vectores Genéticos , Isoflavonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pigmentos Biológicos/metabolismo , ARN Mensajero/metabolismo , Semillas/metabolismo , Glycine max/metabolismo , Glycine max/virología
20.
Plant Pathol J ; 33(3): 213-228, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28592941

RESUMEN

Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA